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1  | INTRODUC TION

DNA sequencing‐based tools are becoming one of the most pop‐
ular approaches with which to detect and measure biodiversity in 
a wide range of natural systems (Bohmann et al., 2014). For exam‐
ple, studies spanning questions from dietary assessments (Alberdi 
et al., 2019) to microbiome analyses (Peterson et al., 2009) and 
ecosystem‐level biodiversity studies (Bush et al., 2017) have ad‐
opted over the last decade molecular approaches based on me‐
tabarcoding (Deiner et al., 2017), and increasingly today, shotgun 
sequencing (Quince, Walker, Simpson, Loman, & Segata, 2017). 
This methodological shift has changed, or at least complemented, 
the way we measure biodiversity (Taberlet, Coissac, Pompanon, 
Brochmann, & Willerslev, 2012). For example, operational units 
for measuring diversity are no longer necessarily defined through 

taxonomic means (Blaxter et al., 2005), and it is easier than ever to 
account for the degree of (dis)similarity between the operational 
units detected in diversity measurement (Pavoine, Bonsall, Dupaix, 
Jacob, & Ricotta, 2017).

Researchers often need to quantify how diverse different sys‐
tems are, for example, to assess ecosystem functioning (Cardinale, 
Palmer, & Collins, 2002) or to measure any species' niche breadth 
(Forister et al., 2015). It is also common to compare the composition 
of different systems, under experimental set‐ups to measure the dif‐
ferences yielded by different treatments (e.g., Gevers et al., 2014), 
or in observational designs to assess whether and how much dietary 
niches differ (e.g., Kartzinel et al., 2015). A myriad of approaches 
and tools has been developed over the last century to perform such 
operations, each embedded within a statistical background, with 
popular examples including Shannon index (Shannon, 1948), Rao's 
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quadratic entropy (Rao, 1982), Pianka's niche overlap (Pianka, 1974) 
and Unifrac distances (Lozupone & Knight, 2005).

Regardless of the specific approach implemented, researchers 
need to make at least four essential choices when analysing the 
diversity of a biological system. First, they must define the unit 
that encompasses biologically alike entities to be used to measure 
diversity, hereafter referred to as the “type”. Although community 
ecologists have traditionally measured diversity using the taxonomic 
species as the type (Pielou, 1966), with the implementation of mo‐
lecular approaches, this is no longer a general rule (Blaxter et al., 
2005). Second, it is necessary to consider how detections of these 
types are treated, either as presence/absence (=incidence) or quan‐
titatively (=abundance), and if the latter, how abundant and rare 
detections are weighed (Jost, 2006). Third, researchers need to con‐
sider whether, and how, the phylogenetic—or ecological—relations 
between detected organisms will be accounted for when measur‐
ing diversity (Chao, Chiu, & Jost, 2014a). Finally, researchers should 
ideally assess whether the data are representative of the biological 
system studied, and if needed, take the necessary measures to cor‐
rect the biases.

Making the right choice requires acknowledgement of the es‐
sential concepts and differences between the available approaches, 
because the final results might depend on the decisions research‐
ers make to measure biodiversity. Given the plethora of metrics 
available, and since the incorporation of complex attributes like 
phylogenies increases the level of abstraction, there is an increas‐
ing awareness of the need to implement intuitively meaningful di‐
versity measures rather than abstract indices, as the latter can be 
easily misused and misinterpreted (Jost, 2006; Leinster & Cobbold, 
2012; Lucas et al., 2017; Tuomisto, 2010a). In this regard, consid‐
erable effort has recently been dedicated to creating frameworks 
that unify and generalize popular indices (Chao, Chiu, et al., 2014a; 
Jost, 2006; Tucker et al., 2017). One particularly relevant frame‐
work is the so‐called “Hill numbers” which encompass the group 
of diversity measures that quantify diversity in units of equivalent 
numbers of equally abundant OTUs or species (Hill, 1973).

As explained throughout this article, Hill numbers provide a 
general statistical framework that is sufficiently robust and flexi‐
ble to address a wide range of scientific questions that molecular 
ecologists regularly try to answer through measurement, estimation, 

partitioning and comparison of diversities (Chao, Chiu, et al., 2014a; 
Jost, 2006; Tuomisto, 2010a). Hence, this article aims to serve as 
a conceptual and practical guide for diversity analysis of systems 
characterized using DNA sequencing‐based techniques, taking 
advantage of the benefits provided by molecular tools and diver‐
sity analyses based on Hill numbers. With an eye to facilitating its 
application by a wide range of researchers, example data files and 
functions are provided as Supporting information, and the scripts 
needed to reproduce the analyses explained throughout the article 
are presented and explained in the Appendix S1.

2  | DEFINING T YPES FOR DIVERSIT Y 
QUANTIFIC ATION

The first step researchers need to make when assessing the biodi‐
versity of a system is to define the types (Krebs, 2014). In community 
ecology, individuals (i.e., recorded entities) have been traditionally 
classified into taxonomic species (i.e., types) (Figure 1). Therefore, 
diversity measurements have commonly been carried out at spe‐
cies level (e.g., species richness and species diversity), principally 
as determined based on morphological features (MacArthur, 1965; 
Pielou, 1966). The implementation of DNA‐based molecular ap‐
proaches now enables (in principle) diversity to be measured at 
a much finer scale—that of DNA sequence variation. Although 
genetic differentiation might sometimes be decoupled from eco‐
logical differences (Pavoine et al., 2017), multiple reasons render 
it an appropriate element with which to characterize biological 
diversity. First, there is a strong link between phylogeny and vari‐
ation in morphological and functional traits (Felsenstein, 1985; 
Nipperess, Faith, & Barton, 2010). Second, genetic variation is the 
basis upon which evolution generates biological diversity (Mayr & 
Provine, 1998). Third, it confers the possibility to objectively and 
systematically define operational units (Blaxter et al., 2005), over‐
coming problems relating to subjective perception of morphologi‐
cal traits (Hey, Waples, Arnold, Butlin, & Harrison, 2003). Fourth, 
such methods increase the efficiency of the analysis of highly di‐
verse systems, because laboratory procedures can be roboticized 
and bioinformatic steps automated (Alberdi et al., 2019). For all 
these reasons, molecularly defined types, broadly known as OTUs 

F I G U R E  1   Diversity assessment procedures in traditional and DNA sequencing‐based approaches. Recorded entities need to be 
classified into types, before each type is weighed according to its relative abundance and the order of diversity (q). Note the example refers 
to an abundance-based, rather than incidence-based, approach
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or MOTUs (molecular operational taxonomic units, Blaxter et al., 
2005), are becoming the preferred types with which to quantify 
diversity in many fields of the biological sciences.

When using molecular approaches, the recorded entities are no 
longer individuals, but DNA sequences, and the classification into 
types is not any longer based on morphological features, but the 
level of dissimilarity between DNA sequences. Currently, metabar‐
coding is the most popular approach with which to characterize the 
diversity in samples containing DNA derived from complex commu‐
nities (Deiner et al., 2017). Using this method, the amplification and 
subsequent sequencing of short (usually between 50 and 500 nucle‐
otides) targeted molecular markers yields multiple presumably ho‐
mologous sequences that are directly comparable to each other (but 
see section on zero‐inflated, insufficient and biased data). Although 
each of the different sequences (recorded entities) could be consid‐
ered a different type (Callahan et al., 2016), usually similar sequences 
are clustered according to user‐defined similarity thresholds to gen‐
erate OTUs that encompass sequences within a certain degree of 
similarity (Caporaso et al., 2010; Schloss et al., 2009). One of the 
aims of clustering is to adjust the defined types to approximately 
represent biological species, so as to yield diversity measurements 
that resemble traditional species level analyses (Hebert, Cywinska, 
Ball, & deWaard, 2003). Typically, an identity value of 97% has been 
suggested as a standard threshold for considering the average ge‐
netic dissimilarity level across species (Caporaso et al., 2010; Schloss 
et al., 2009), although clearly this does change across taxa and ge‐
netic marker (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Kim, Oh, 
Park, & Chun, 2014). While clustering is useful for analyses in which 
intraspecific diversity is largely irrelevant (such as diet assessments), 
it entails a loss of potentially useful information for most biodiversity 
analyses (Pavoine & Izsák, 2014), as fine‐scale variation can differen‐
tiate pathogenic from commensal bacterial strains (McElroy, Zagordi, 
Bull, Luciani, & Beerenwinkel, 2013) or be informative of population 
structure (Rosen, Davison, Bhaya, & Fisher, 2015), for instance.

With the implementation of molecular approaches, the defini‐
tion of types becomes more objective, as types are defined based on 
mathematical criteria applied to simple DNA sequences, rather than 
assessments of complex morphological traits. However, as types 
can be defined using different algorithms and parameters (Rideout 
et al., 2014), and the employed approach has a large impact on the 
results (Alberdi et al., 2018), authors need to provide detailed infor‐
mation (ideally full codes) about the approaches and criteria used 
to define types in order for studies to be reproducible. If authors 
publish the raw sequence data, others can choose different criteria 
to define types and re‐analyse the diversity of a system to ensure 
comparability.

3  | WEIGHING THE IMPORTANCE OF 
T YPES

Diversity measurements require assignment of an importance value 
to each of the detected types. In traditional community ecology, this 

has been done using metrics such as individual counts, biomass or 
spatial units, depending on the type of system, research question 
and fieldwork strategy. Molecular analyses provide a different type 
of data that could provide such information, namely the amount of 
DNA sequences assigned to each OTU (Deagle et al., 2019).

There are multiple approaches that enable differential weighing 
of abundant and rare OTUs. The simplest measure of diversity is OTU 
richness (McIntosh, 1967). As this only considers whether an OTU is 
present or absent in the system, abundant and rare OTUs are given 
the same weight. However, the multiple OTUs present in a system 
are seldom distributed evenly; thus, richness is rarely the best ap‐
proach with which to reflect the diversity of a system. Consider for 
instance, a simple system characterized with 1,000 sequence reads, 
in which 990 belong to OTU1 and 10 to OTU2. This would yield a 
richness value of 2, even though the system is overwhelmingly dom‐
inated by OTU1. Thus, metrics such as the Shannon or the Simpson 
indices, which also account for the evenness of the system, are con‐
sidered more representative of the diversity of a system. It is critical 
to note, however, that unlike richness, neither the Shannon index 
nor the Simpson index are actual measures of diversity. The former 
measures entropy thus yields the uncertainty in the OTU identity 
of a randomly chosen sequence in the system. The latter provides 
the probability that two randomly chosen DNA sequences actually 
belong to different OTUs (Chao, Chiu, et al., 2014a). Consequently, 
the values that Shannon and Simpson indices yield are difficult to 
interpret—the values in the previous example are 0.056 and 0.020, 
respectively, and do not exhibit the intuitive properties ecologists 
expect from a diversity measurement.

Specifically, our intuitive notion of diversity would expect that 
when doubling the number of OTUs in a system, then the diversity 
measured should also double. This is known as the “doubling prop‐
erty” or “replication principle” (Chao, Chiu, & Jost, 2010; Hill, 1973; 
Jost, 2006). For example, if the diet of one bat species is comprised 
of 15 moth species with even abundances, and the diet of another 
species encompasses 30 moths also with even abundances, intui‐
tively we would conclude that the second bat's diet is twice as di‐
verse (100% more diverse) as the first one. However, most diversity 
indices lack this basic property. The Shannon entropy only increases 
from 2.7 (15 species) to 3.4 (30 species), which might suggest a di‐
versity gain of 26%, and the Simpson index only increases from 0.93 
to 0.96, which might suggest a gain of barely 3%. Hence, treating 
diversity indices as diversity values has noticeable practical conse‐
quences, as they all vary in range and behaviour (Jost, 2006).

Fortunately, richness, Shannon index and Simpson index belong 
to a single statistical framework, as they all are monotonic functions 
of the basic sum q�=ΣS

i=1
p
q
i , that is, the sum of the relative abun‐

dances of the types (pi) elevated to the q value (Jost, 2006; Keylock, 
2005). This implies that Hill numbers (qD), or actual diversities, rather 
than entropies or probabilities, can be formulated in terms of the 
basic sum (qλ) and the parameter q (R scripts in Appendix S1):

qD=

(

∑S

i=1
p
q
i

)1∕(1−q)
=
(

q
�
)1∕(1−q)

,q≠1 (1)
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This expression was first discovered by Hill (1973), hence the 
use of the name “Hill numbers” to refer to the output of this for‐
mula. Hill numbers have two major advantages over diversity indi‐
ces: (a) the interpretation of the measure and its measurement unit 
is always the same (Chao, Chiu, et al., 2014a; Tuomisto, 2010a), 
and ii) the sensitivity towards abundant and rare OTUs can be 
modulated with the parameter q. The expression yields a diver‐
sity measure in “effective number of OTUs”, that is, the number 
of equally abundant OTUs that would be needed to give the same 
value of diversity (Hill, 1973; Jost, 2006). When all OTUs in a sys‐
tem have the same relative abundances, as in the moth example 
given above, the effective number of OTUs for all q values equals 
the actual number of OTUs, namely richness (Figure 2a1). When 
the relative abundances of the types vary however, then the ef‐
fective number of OTUs for q > 0 values decreases (Figure 2a2). 
The higher the heterogeneity between types, the lower the ef‐
fective number of OTUs. In extreme cases in which the system is 
dominated by a few equally abundant OTUs, the effective num‐
ber of OTUs will approach the number of those abundant OTUs 
(Figure 2a3).

The sensitivity towards abundant and rare OTUs can be 
modulated using the scaling parameter q, known as the “order” 
of diversity (Jost, 2006). The larger the q value, the higher the 
importance attributed to abundant OTUs. Three q values are 
particularly relevant, both for their significance, and their close 

relationship to popular diversity indices: q = 0, q = 1 and q = 2. 
When a diversity of order zero (q = 0) is applied to the formula, 
it becomes insensitive to OTU frequencies, thus yielding a rich‐
ness value. As the relative abundances of OTUs are overlooked, 
rare OTUs are overweighed. A q value of 1 (in practical terms its 
limit, as the Hill number is undefined for q = 1) is the value that 
weighs OTUs by their frequency, without disproportionately fa‐
vouring either rare or abundant ones (Jost, 2006). The value it 
yields is exactly the exponential of the Shannon index. In fact, q 
values under unity favour rare OTUs, while values above one fa‐
vour abundant OTUs (Keylock, 2005). When a q value of 2 is ap‐
plied, abundant OTUs are overweighed, and the formula yields 
the multiplicative inverse of the Simpson index. Indeed, common 
diversity indices can be transformed to Hill numbers (also known 
as numbers equivalents or true diversities sensu Jost, 2006), by 
applying simple mathematical transformations (Table 1).

The numbers equivalents of the Shannon and Simpson indi‐
ces in the 2‐OTU example given above (OTU1 = 990 sequences; 
OTU2 = 10 sequences) would therefore be exp(0.056) = 1.05 and 1/
(1–0.020) = 1.02, respectively. These are the effective number of 
OTUs for orders q = 1 and q = 2, respectively. The fact that these 
effective OTU values are close to 1 demonstrates that the system is 
dominated by a single OTU (in this example 99% of the reads belong to 
OTU1). The higher the q value, the lower the diversity value, because 
the importance attributed to abundant OTUs increases. The relation 

F I G U R E  2   Relation between system composition, raw diversity indices and Hill numbers, and diversity profiles. (a) The raw diversity 
index values for q values 0, 1 and 2, and their respective Hill numbers of four theoretical systems with different abundance distributions. In 
a1 and a4, all types are evenly distributed; thus, the Hill numbers of all orders of diversity (q) are identical. In a2, as the relative abundances 
of the types differ, the Hill numbers of order q > 0 are lower than the value for q = 0, which overlooks relative abundances. In a3, there are 
five very abundant types and five very rare types. Consequently, the Hill numbers of order q > 0 are much lower than the value for q = 0, 
approximate the number of abundant types, and better reflect the abundance distribution of the system. Note that in a2 and a3, the Hill 
numbers decrease as the importance of abundant types is increased with higher q values. (b) The relation between the raw Shannon (b1) 
and Simpson (b2) index values and their respective Hill numbers. The position of the four theoretical systems (a1–4) is shown in both cases. 
(c) Diversity profiles that show the different components of the diversity (i.e., number of OTUs and their evenness) of the four theoretical 
systems at a glance
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between raw indices and diversities in more complex systems with dif‐
ferent degree of heterogeneity is shown in Figure 2.

The ability to modulate the sensitivity towards abundant and 
rare OTUs by modifying a single parameter (q) is a useful means with 
which to adjust diversity measurements to the type of data and re‐
search question. For example, when rare types are considered to be 
of low importance (e.g., when attempting to define a core diet or mi‐
crobiome), or when rare types are considered untrustworthy due to 
technical issues (e.g., PCR or sequencing errors), researchers might 
opt for using a high q value, for example, q = 2, which overweighs 
abundant OTUs. The result can be interpreted as the effective num‐
ber of dominant OTUs in the system (Chao, Chiu, et al., 2014a). In 
contrast, if rare types are considered essential for the system, or re‐
searchers do not trust the relative abundance data due to potential 
technical biases, researchers might opt for using a q value of 0 that 
simply counts the number of types.

Hill numbers also enable diversity profiles of systems and sub‐
systems to be plotted as continuous functions of the parameter q 
(Figure 2c). This is useful to characterize the OTU abundance distri‐
bution of a system, as different compositions and abundance distribu‐
tions can yield the same value for a particular order of diversity (e.g., 
q = 1), but not for many of them (e.g., q = 0, q = 0.5 and q = 1). Hill num‐
bers convey all information contained in a species abundance distribu‐
tion at a glance (Chao, Chiu, et al., 2014a; Leinster & Cobbold, 2012).

4  | ABUNDANCE‐BA SED VERSUS 
INCIDENCE‐BA SED APPROACHES

Although the Hill number framework was originally developed to 
deal with relative abundance data (i.e., relative number of sequences 

assigned to each OTU), it has recently also been applied to inci‐
dence data. This means that the relative abundances of the types 
detected in each of the subsystems (=samples) belonging to a cer‐
tain system are overlooked, and the diversity of the system is cal‐
culated by computing the relative number of detections of a given 
type across the whole system (Figure 3). Although incidence data 
are less informative than abundance data, it is both easier to collect, 
more comparable, and has been extensively used under the niche 
theory framework (Box 1). When dealing with DNA‐derived data, 
incidence‐based approaches have particular relevance, given the 
limited quantitative relationship that exists between the biomass in 
the actual system and the DNA sequences produced (Lamb et al., 
2019), which might challenge the representativeness of abundance 
data. However, consensus has not been reached within the molecu‐
lar ecology research community about which approach is the most 
appropriate, as simulations have shown that analyses based on in‐
cidence data often overestimate the importance of rare OTUs, and 
abundance data might provide a more accurate view of the diversity 
even with moderate recovery biases (Deagle et al., 2019).

While either approach might be valid depending on the research 
question and the study design, it is important to acknowledge the 
basic differences between abundance‐based and incidence‐based 
Hill numbers. In the abundance‐based approach, the unit used to 
compute diversity is the count of DNA sequences assigned to each 
OTU. In contrast, in the incidence‐based approach, the count of 
subsystems in which an OTU is present is used to compute diver‐
sity. Thus, abundance‐based Hill numbers with different orders of 
diversity can be computed for both subsystems (=samples) and en‐
tire systems (see section about diversity partitioning for details), 
whereas incidence‐based q > 0 Hill numbers are only meaningful 
for entire systems (=pool of samples). The diversity of a system 

TA B L E  1   The three most common diversity and phylodiversity indices and the transformations to be carried out to obtain (phylogenetic) 
Hill numbers of orders 0, 1 and 2. pi refers to the relative abundance of OTU i, BT refers to the tree depth (time interval if the tree is 
time‐calibrated) considered, Li refers to the length of branch i, and ai refers to the sum of relative abundances of OTUs descended from 
branch i. Note that in the literature the diversity indices 0H, 1H and 2H are often represented as S, H and D, respectively. R scripts to execute 
all these equations are shown in Appendix S1

  q Diversity index qH Hill number in terms of qH Hill number qD

OTU diversity 0 Richness 
0H≡

S
∑

i=1

p0
i

Richness 
0D= 0H 0D=

�

S
∑

i=1

p0
i

�1∕(1−0)

1 Shannon entropy 
1H≡−

S
∑

i=1

p1
i
lnp1

i

Shannon diversity 
1D= exp

(

1H
) 1D=

�

S
∑

i=1

p
i
log p

i

�

2 Simpson index 
2H≡1−

S
∑

i=1

p2
i

Simpson diversity 
2D=1∕

(

1−2H
)

2D=

�

S
∑

i=1

p2
i

�1∕(1−2)

Lineage diversity 0 Faith’s PD 

PD≡

S
∑

i=1

Li

0D
(

T
)

=PD∕T
0D

�

T
�

=

�

∑

i∈BT

Li

T
a0
i

�1∕(1−0)

1 Allen’s HP 
HP=−

∑

i

Liailogai

1D
(

T
)

= exp
(

HP∕T
)

1 ̄D(T)= exp

�

−
∑

i∈BT

Li

T
ai log ai

�

2 Rao’s Q 
Q=

∑

i,j

di,jpipj

2 ̄D(T)=1∕
(

1−Q∕T
)

2 ̄D(T)=

�

∑

i∈BT

Li

T
a2
i

�1∕(1−2)
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measured using abundance and incidence approaches converge 
when q = 0, but they yield different diversity values when q > 0 
(Figure 3). This happens because the two approaches measure 
different properties. Abundance‐based Hill numbers measure the 
effective number of equally abundant OTUs in the system, while 
incidence‐based Hill numbers measure the effective number of 
equally frequent (across subsystems) OTUs in the system.

5  | ACCOUNTING FOR REL ATEDNESS 
BET WEEN T YPES

The traditional and still most broadly used diversity indices, as well 
as their corresponding Hill numbers, assume that all types are equally 
(dis)similar; that is, types are treated as discrete elements with no 
correlation among them. Such measures have been coined as neutral 

or species‐neutral measures of diversity (Chao et al., 2010; Marcon & 
Hérault, 2015). This implies that, for example, a system (e.g., dietary 
sample) comprised of four Noctua moths (Insecta, Lepidoptera) with 
even abundances has the same diversity as another system evenly 
composed of two Noctua moths and two Carabus beetles (Insecta, 
Coleoptera). Obviously, in ecological terms, a system holding moths 
and beetles is more heterogeneous than a system composed solely of 
moths. Although ecologists realized this pitfall long before molecular 
tools were implemented into the study of community ecology (Pielou, 
1975), it was only in the last decade that a general framework of non‐
neutral measures of diversities was developed, based on the trait‐
based or phylogenetic relations between detected OTUs (Chao, Chiu, 
et al., 2014a). In this article, we will focus on the latter due to its more 
straightforward applicability to molecularly characterized systems.

Each principal diversity index (e.g., richness, Shannon index and 
Simpson index) has an equivalent phylodiversity index (Chao et al., 

F I G U R E  3   Differences between abundance‐based and incidence‐based Hill numbers. The Hill numbers yielded for the entire system 
are different depending on the approach employed. In abundance‐based approaches, the DNA sequence is the unit that the diversity is 
computed on, while in incidence‐based approaches, it is the sample the unit upon which the diversity is measured. (*) The asterisk indicates 
that the equations are undefined for q = 1, thus in practice either the 1D formula shown in Table 1 or a limit of the unity must be used, for 
example, q = 0.9999. However, q = 1 is used for the sake of simplicity

Box 1 Incidence‐based diversity analysis under the ecological niche framework
Dietary niche breadth and niche overlap are two concepts at the heart of the ecological niche theory. When diversity is measured 
within the framework of niche theory, it takes the name of niche breadth, niche width or niche size (Colwell & Futuyma, 1971), while 
the degree of similarity between two (or more) contrasting niches is known as niche overlap (Hurlbert, 1978). Surprisingly, Hill numbers 
are not explicitly used in the niche theory literature, although many approaches to measure niche breadth and overlap are closely re‐
lated. Most statistical approaches employed within the niche framework rely on incidence, rather than abundance, data. In fact, one 
of the most popular indices to measure niche breadth, namely the Levins' index (Levins, 1968), is the incidence‐based Hill number of 
order of diversity q = 2. Hence, the implementation of incidence‐based Hill numbers in niche breadth characterization seems com‐
pletely natural and useful, as it enables characterization of the observed diversity in a more complete and straightforward way than 
when using abstract indices, as explained throughout the main text. Naturally, the Hill number framework can also be used to compute 
niche overlap between two or more systems (e.g., predator species), and even explore phylogenetic relations between types (e.g., prey 
OTUs), by implementing the diversity partitioning approach explained in the main text, and deriving similarity from beta diversity 
values using the formulae shown in Table 2.
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810  |     ALBERDI and GILBERT

TA B L E  2   Diversity and phylodiversity partitioning into α, β and γ components based on Hill numbers, and four similarity measures 
derived from the resulting β‐diversities. In the diversity partitioning equations, N refers to the number of subsystems (samples), j refers to 
each subsystem, S refers to the number of OTUs, i refers to each OTU, wj refers to the relative weight of subsystem j (in case of even weighs 
it is 1/N), pi refers to the relative abundance of OTU i, T refers to the considered tree depth which for ultrametric trees is reduced to tree 
length, BT refers to the considered tree depth (time interval if the tree is time‐calibrated) considered, Li refers to the length of branch i, and ai 
refers to the sum of relative abundances of OTUs descended from branch i. Note that to calculate Hill number of order 1, the actual order of 
diversity to be used needs to be a limit of the unity rather than the number one itself, or a different equation must be used as shown 
elsewhere (Chao et al., 2010; Jost, 2006). R scripts to execute all these equations are shown in Appendix S1

Diversity partitioning
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=
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∑
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�1∕(1−q) Jost (2007), Chao et al. (2012); Chiu 
et al. (2014)

Gamma
qD

�
=

�

S
∑

i=1

�

N
∑

j=1

wjpij

�q�1∕(1−q)

Beta qD
�
= qD

�
∕qD

�

Phylodiversity partitioning

Alpha
q ̄D

𝛼
(T)=

1

TN

�

∑

i∈BT

Li

N
∑

j=1

�

wjaij

T

�q

�1∕(1−q) Chiu et al. (2014), Chao et al. (2016)

Gamma
q ̄D

𝛾
(T)=

1

T

�

∑

i∈BT

Li

�

∑N

j=1
wjaij

T

�q
�1∕(1−q)

Beta q ̄D
𝛽
(T)= q ̄D

𝛾
(T)∕q ̄D

𝛼
(T)

Similarity measurement derived from β‐diversities based on Hill numbers (for both diversity and phylodiversity). Dissimilarity measures are their 
one‐complements (1 −XqN)

Sørensen‐type overlap
CqN=

[

(1∕qD�)
q−1

−(1∕N)
q−1

]

[

1−(1∕N)
q−1

]

MacArthur (1965), Harrison et al. 
(1992), Jost (2006, 2007), Chiu et al. 
(2014), Chao et al. (2016)

Jaccard‐type overlap
UqN=

[

(1∕qD�)
1−q

−(1∕N)
1−q

]

[

1−(1∕N)
1−q

]

Sørensen‐type turnover‐complement VqN=
(N−qD

�)
(N−1)

Jaccard‐type turnover‐complement SqN=
(1∕qD�

−1∕N)
(1−1∕N)

F I G U R E  4   Phylogenetic trees and relative OTU abundances of samples and their corresponding diversity and phylodiversity profiles. 
(a) Relative abundances and phylogenetic relationships of the OTUs detected in three bat faecal samples. Phylogenetic trees include all the 
OTUs detected in the three samples, and the lineages detected in each sample are coloured and bolded. (b) Diversity and phylodiversity 
profiles that describe the three samples as a function of the order of diversity (q). Mca1 is the sample with the highest richness, although the 
dominance (relative abundance of 0.80) of one of the OTUs drops the diversity values when q > 0. In contrast, Mem3 contains less OTUs, 
but their even distribution yields higher q > 0 diversity values
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     |  811ALBERDI and GILBERT

2010; Pavoine, Love, & Bonsall, 2009). These are Faith's PD (Faith, 
1992), Allen's Hp (Allen, Kon, & Bar‐Yam, 2009) and Rao's Q (Rao, 
1982), respectively (Table 1). Similar to Jost's (2006) work with di‐
versity indices, Chao et al. (2010) unified the different phylodiversity 
indices around the Hill numbers, yielding the so‐called phylogenetic 
Hill numbers. Within this framework, the units of diversity are nei‐
ther OTUs nor species, but rather branch segments or lineages as 
defined by a phylogenetic tree (Figure 4a). In fact, the phylodiversity 
measure incorporates three types of information: the tree's branch‐
ing pattern, the relative branch lengths and the relative abundances 
of each node/branch (see Chao et al., 2010 for a detailed explana‐
tion). It is formulated as follows:

In this equation, BT is the set of all branches or the ones within 
the depth (T) considered for the analyses in the phylogenetic tree, 
Li is the length of the branch i, and ai is the sum of relative abun‐
dances of all OTUs descended from branch i. Hence, the abun‐
dance‐based phylogenetic Hill numbers are measured in units of 
the effective number of equally abundant and equally distinct 
lineages (Chao et al., 2010; Chao, Gotelli, et al., 2014b). For two 
systems with identical number of types and relative abundances, 
the one with the deepest branches (largest phylogenetic differ‐
ences across types) will be the one with the highest phylodiver‐
sity. Besides, the phylodiversity value will always be lower than its 
related OTU diversity (Chao et al., 2010), except in the imaginary 
case in which the phylogenetic tree is star‐shaped, that is, with all 
equal‐size branches radiating from the root, in that case the phylo‐
diversity value is equal to the diversity value. It must be noted that 
q ̄D(T), which yields the effective number of lineages, expresses a 
generalized mean of Hill numbers rather than a genuine Hill num‐
ber (Chao, Chiu, & Jost, 2016). Thus, it is more accurate to refer to 
it as the mean phylogenetic diversity (Chao et al., 2010). In order to 
obtain the total phylogenetic diversity, q ̄D(T) needs to be multiplied 
by tree depth (T), which if specified in years, yields a Hill number 
of order q during the time interval from T years ago to the present, 
that is, the effective number of lineage‐years (Chao et al., 2010). 
Similar to the diversity profiles mentioned before (Figure 2b,c), it 
is also possible to plot the phylogenetic Hill numbers as a function 
of T (Figure S1), which indicates the distribution of the phyloge‐
netic diversity across the OTU tree (Chao et al., 2010). If the OTU 
tree exhibits very recent radiation, the phylogenetic diversity will 
decrease rapidly (Figure S1a), while if the phylogenetic tree shows 
a deep branching pattern, the mean phylogenetic diversity will re‐
main high until approaching the root of the three (Figure S1b).

The phylogenetic Hill numbers are based on trees (usually ul‐
trametric) in which the relations between OTUs are established. A 
major advantage of metabarcoding is that phylogenetic trees can 
be directly built using the homologous DNA sequences or OTU 
representative sequences generated. This could liberate research‐
ers from having to assign taxonomy to the DNA sequences in order 

to incorporate phylogenetic data to the diversity measurement and 
enables piping commands to automatize the process of the analysis 
of diversity, as shown in the Appendix S1. However, building phy‐
logenies from metabarcoding data have its limitations, as discussed 
in Box 2.

6  | PARTITIONING DIVERSIT Y INTO α ,  β  
AND γ  COMPONENTS

In ecology, the idea of diversity has been traditionally broken 
down into three components: alpha (α), beta (β) and gamma (γ) 
diversities (Whittaker, 1960). In general terms, α‐diversity refers 
to the average diversity of subsystems or samples (although see 
discussion about the different α‐diversities in Chao, Chiu, & Hsieh, 
2012), β‐diversity measures the differences between subsys‐
tems (although see discussion about the different β‐diversities in 
Tuomisto, 2010a), while γ‐diversity includes the entire diversity 
of the system (Figure 5). Despite the existence of different ap‐
proaches for diversity partitioning, within the framework of Hill 
number diversity partitioning responds to a multiplicative defini‐
tion qDᵧ = qDα × qDß (Chao et al., 2012; Jost, 2007); that is, beta di‐
versity is obtained by dividing gamma diversity by alpha diversity. 
This formulation has three properties that ecologists intuitively 
expected from a diversity measurement: (a) alpha and beta com‐
ponents are unrelated; thus, a high value of alpha does not force 
the beta component to be high and vice versa, (b) gamma is com‐
pletely determined by alpha and beta, and (c) alpha is never greater 
than gamma. The alpha, gamma and beta components based on 
Hill numbers of order q are obtained using the equations shown 
in Table 2 (Chao et al., 2012; Jost, 2006), which despite their ap‐
parent complexity, can be easily computed using the R functions 
shown in Appendix S1. Alpha, beta and gamma diversities can 
also be computed including phylogenetic information (Chiu, Jost, 
& Chao, 2014) and can be used to decompose biological systems 
with multiple hierarchical levels (Gaggiotti et al., 2018).

It must be highlighted though that the alpha diversity is not ob‐
tained by averaging the Hill numbers of the subsystems, but comput‐
ing the Hill numbers from the averaged basic sums of the subsystems 
(Chao et al., 2012). In contrast, gamma diversity is obtained by taking 
the average of OTU relative abundances across subsystems and then 
computing the Hill numbers of the pooled system. Although beta 
diversity is often used to vaguely refer to any kind of compositional 
heterogeneity among systems (Barwell, Isaac, & Kunin, 2015; Chao, 
Chiu, et al., 2014a; Tuomisto, 2010a,2010b), when diversity parti‐
tioning is carried out using Hill numbers, beta diversity is an actual 
diversity value that measures the effective number of equally large 
and completely distinct subsystems in a system. However, the Hill 
number beta diversity can also be interpreted as a unitless scalar 
that quantifies the ratio of diversities between two levels (alpha 
and gamma) of observation; thus, it also quantifies how many times 
richer an entire system is in effective OTUs (gamma diversity) than 
its constituent subsystems are on average (alpha diversity) (Figure 5). 

(2)q ̄D(T)=

(

∑

i∈BT

Li

T
a
q
i

)

1

1−q

,q≠1

 17550998, 2019, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13014 by E

pfl L
ibrary B

ibliothèque, W
iley O

nline L
ibrary on [03/12/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



812  |     ALBERDI and GILBERT

The Hill number beta diversity always ranges from 1 (when all sub‐
systems are identical) to the actual number of subsystems (when all 
subsystems are completely different) (Chao, Chiu, et al., 2014a; Chiu 
et al., 2014).

7  | ME A SURING DISSIMIL ARIT Y

Researchers often need to quantify the (dis)similarity between 
subsystems (e.g., dietary overlap between species, microbiome 
differences between intestinal sections and community differ‐
ences between habitats). Computing (dis)similarities is also a 

necessary step prior to popular statistical methods such as NMDS 
or ANOSIM. Dissimilarity indices range between 0 and 1; 0 indi‐
cates that the subsystems compared are identical, while 1 indi‐
cates that they are completely different. As the beta diversity lies 
in between 1 and the total number of subsystems, the Hill number 
beta diversity cannot directly be used to compute dissimilarities. 
However, it is possible—and desirable—to remove the dependence 
on the number of subsystems and compute dissimilarity measures 
by applying simple transformations to beta diversity, both for di‐
versities (Chao et al., 2012; Jost, 2007) as well as phylodiversi‐
ties (Chao, Chiu, et al., 2014a; Chiu et al., 2014). Four classes of 
similarity measures derived from Hill number beta diversities have 

Box 2 Obtaining reliable phylodiversity measurements from metabarcoding data
Metabarcoding enables phylogenetic diversities to be computed directly from OTU representative sequences. However, at least three 
important issues must be considered so as to obtain reliable phylogenetic diversity values. First, some OTUs might not be of interest for 
diversity measurement of, for instance, microbiomes or diets. Even when primers are taxon‐specific, non‐targeted taxa might also be 
amplified and sequenced (Alberdi et al., 2018). On the one hand, there are organisms that usually appear at low abundance; examples 
could be eukaryotic intestinal parasites when characterizing microbiomes from gut contents, or skin acari when studying diet from fae‐
ces. These organisms do not usually introduce large distortion to q > 0 diversity measurements, as their relative abundances tend to be 
low, but if they are not detected and excluded, they can considerably inflate the phylodiversity measures, given that they tend to be 
distantly related to the intended targets. On the other hand, some metabarcoding primers might amplify and sequence host or predator 
DNA from which samples have been acquired, which in certain cases can account for the majority of the sequence reads (Alberdi et al., 
2018; Galan et al., 2018), thus completely distorting diversity and phylodiversity measurements in analyses with q > 0 values. Hence, we 
strongly advise taxonomic assignment to the OTU sequences, and application of a relaxed filter based on low similarity values (e.g., 90%) 
to reference sequences, so as to exclude OTU sequences assigned to non‐targeted taxonomic groups.
Another major issue is the low robustness of phylogenetic trees generated from metabarcoding sequences. The combination of short 
DNA sequences (often < 200 bp) and abundant OTUs (often > 1,000), as usually generated in metabarcoding studies, yields phyloge‐
netic trees with very low node support, indicating high phylogenetic uncertainty (Douady, Delsuc, Boucher, Doolittle, & Douzery, 2003). 
Phylogenetic uncertainty means that multiple trees have shared probabilities of reflecting the evolutionary history of the organisms. As 
each of these trees might yield different phylodiversity values (Figure S3a,b), it is advisable to implement approaches that account for 
the uncertainty of the phylogenetic reconstructions used for diversity measurement. This enables probability distributions to be gener‐
ated for the different orders of diversity (Figure S3c), as well as plotting of diversity profiles with confidence intervals (Figure S3d).
One option to account for phylogenetic uncertainty is to rely on Bayesian inference approaches (e.g., MrBayes, BEAST), in which node 
support is based on a posterior probability distribution of trees. In a Bayesian analysis, a Markov chain Monte Carlo (MCMC) usually 
with > 1–10 million steps begins from an initial tree (usually built using simple neighbour‐joining or parsimony methods) and moves 
through the parameter space searching for high‐probability regions of the posterior. Trees are sampled at fixed intervals, and the poste‐
rior probability of a given tree is approximated by the proportion of time that the chains visit it (Nascimento, Reis, & Yang, 2017). In the 
long run, a successful Markov chain should reach a stationary distribution (Figure S4). Software such as MrBayes or BEAST output all 
the trees samples across the MCMC chain, usually every 1,000 steps. Hence, as explained in Appendix S1, it is possible to skip the trees 
sampled before the MCMC reached the stationary phase (known as burn‐in), randomly sample a subset of trees from the resulting 
MCMC chain, compute phylodiversity measurements based on different randomly samples trees and obtain the average and standard 
error value that indicates phylogenetic uncertainty (Figure S3d). If the MCMC has reached a stationary distribution with low variance, 
the sampled trees will be similar to each other, so they will be the phylodiversity results. In contrast, if the MCMC chain has not reached 
a stationary distribution and/or the variance is high, the sampled trees will be different to each other, and hence, the variance of the 
phylodiversity results will also increase.
Finally, it is essential to acknowledge that different markers might yield different phylogenetic trees, more so if their power for phylo‐
genetic inference is low, as is the case for most markers employed for metabarcoding. This means that an identical community character‐
ized with different molecular markers, even in the ideal (yet likely unrealistic) case without PCR biases, could yield different phylodiversity 
values. It is therefore advisable to avoid comparisons between the diversities of systems characterized using different molecular 
markers.
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     |  813ALBERDI and GILBERT

been proposed (Table 2), from which dissimilarity measures can 
be obtained by calculating their one‐complements (1‐XqN). The 
Sørensen‐type classes quantify similarity from the perspective of 
the subsystem, while the Jaccard‐type classes quantify similarity 
from the perspective of the overall system (Chao et al., 2019; Chiu 
et al., 2014).

1.	 The Sørensen‐type overlap (CqN for diversity/ ̄CqN for phylodi‐
versity) quantifies the effective average proportion of a sub‐
system's OTUs (or lineages in the case of phylodiversities) that 
is shared across all subsystems. This is thus a metric that 
quantifies overlap from the subsystem's perspective. Its cor‐
responding dissimilarity measure (1 − CqN) quantifies the effective 
average proportion of nonshared OTUs or lineages in a system 
(Chao et al., 2012; Chao, Jost, Chiang, Jiang, & Chazdon, 2008).

2.	 The Jaccard‐type overlap (UqN/ ̄UqN) quantifies the effective pro‐
portion of OTUs or lineages in a system that are shared across all 
subsystems. Hence, this metric quantifies overlap from the per‐
spective of the overall system. Its corresponding dissimilarity 
(1 − UqN) quantifies the effective proportion of nonshared OTUs 
or lineages in the overall system.

3.	 The Sørensen‐type turnover‐complement (VqN/̄VqN) is the comple‐
ment of the Sørensen‐type turnover, which quantifies the normalized 
OTU turnover rate with respect to the average subsystem (i.e., alpha), 
thus provides the proportion of a typical subsystem that changes 
across subsystems (Harrison, Ross, & Lawton, 1992; Jost, 2007).

4.	 The Jaccard‐type turnover‐complement (SqN/̄SqN) is the comple‐
ment of the Jaccard‐type turnover, which quantifies the normalized 
OTU turnover rate with respect to the whole system (i.e. gamma).

These generalizations encompass, as special cases some of the 
most popular (dis)similarity measures used in ecology (Chao, Chiu, 
et al., 2014a; Chao et al., 2016; Jost, 2007). For instance, C02 (the 
Sørensen‐type overlap between two systems [N = 2] when OTU 
phylogenies are not considered and q = 0) produces the Sørensen 
similarity index, while C22 (idem but q = 2) yields the Morisita‐
Horn index. Another noteworthy example is that the measure 
1 −  ̄U02 (the one‐complement of the Jaccard‐type overlap when 
OTU phylogenies are considered, q = 0 and N = 2) is identical to 
the UniFrac distance (Lozupone & Knight, 2005). Further relations 

between these four (dis)similarity measures and other popular in‐
dices can be found elsewhere (e.g., Jost, 2007, Chao et al., 2012, 
Chiu et al., 2014). If researchers opt for basing diversity measure‐
ments on Hill numbers, as advocated in this article, it is also advis‐
able to frame dissimilarity measurements within the same scheme. 
Basing dissimilarity measurements on beta diversities derived 
from Hill numbers enables logical consistency to be kept with the 
conclusions based on Hill numbers (Chao et al., 2012; Jost, 2007). 
Furthermore, as all measures are continuous as q ranges from zero 
to infinity, (dis)similarity profiles can be made for any of them 
(Chiu et al., 2014).

8  | DE ALING WITH ZERO ‐INFL ATED, 
INSUFFICIENT AND BIA SED DATA

All measures introduced throughout the article assume that the 
parameters of the analysed system are well‐known, that is, that 
the OTU counts and relative abundances in the data set perfectly 
mirror the biological system under study. In practice, however, due 
to the high diversity of biological systems, their spatio‐temporal 
heterogeneity and the complexity of the data processing methods, 
molecularly analysed systems are seldom characterized perfectly 
(Alberdi et al., 2019). Hence, there is a high chance that the Hill 
numbers calculated from the data differ from the actual diversity 
of the biological system (Chao, Gotelli, et al., 2014b). In DNA‐based 
diversity assessments, there are three major interrelated sources 
of distortion that need to be assessed and, if possible, addressed: 
(a) zero‐inflation, (b) insufficient and biased sample characteriza‐
tion effort (low sequencing depth) and sample size, and (c) varying 
OTU‐detection probability.

The tendency to contain a large proportion of zero values is a 
distinguishing characteristic of many ecological data sets (Martin 
et al., 2005), but it is particularly relevant for DNA‐derived data, 
due to the capacity to recover very high diversities (often > 1,000 
OTUs). Data sets that exhibit a distribution of OTU counts biased 
towards a few dominant ones, and a “tail” of rare OTUs represented 
by a few counts, are common in molecular data sets. While the dom‐
inant OTUs tend to appear in many samples, the rare OTUs are often 
sparsely distributed, yielding data sets with high number of zeros 

F I G U R E  5   Explanatory example of hierarchical diversity partitioning. The system is comprised of 40 individual bats; thus, it has two 
hierarchical levels: individual bats and overall community
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(Figure S2). When the high number of zeros produces the data do 
not readily fit standard distributions (e.g., normal, Poisson, binomial, 
negative‐binomial), and thus complicate statistical analyses, the data 
set is referred to as zero‐inflated (Heilbron, 1994).

One of the main challenges of zero‐inflated data is the unknown 
nature of the zero values. Some might be true zeros due to the ab‐
sence of the OTU in the system, yet others might be false zeros de‐
rived from imperfect characterization. Temporal and spatial variability 
of the distribution of OTUs can result in OTUs that actually occur in a 
system, being absent during the sampling period. The high incidence 
of such false zeros is the result of an insufficient or incorrect sampling 
design, and it is very relevant in diet analyses, because each sample 
usually contains just a fraction of the total prey range of a predator 
(Aizpurua et al., 2018). Another source of false zeros is the imper‐
fect characterization of samples; that is, the OTU is present in the 
sample but not detected. This can occur because sequencing was not 
deep enough to recover a DNA sequence with very low abundance 
in the system, or because the bottlenecks during sample processing 
remove the rare DNA sequences (Alberdi et al., 2019). Zero‐inflation 
is not the only issue of molecular diversity analyses though. Recently 
conducted research has clearly documented how many biological and 
technical distortion factors introduce numerous biases that break the 
relation between the actual biomass distribution in the system and 
the relative amount of DNA sequences obtained in the final results 
(Barnes & Turner, 2016; Lamb et al., 2019). This is partly due to primer 
amplification biases, and thus sequencing probability, due to the dif‐
ferent binding affinity between primers and target sequences (Piñol, 
Senar, & Symondson, 2019). Finally, both PCR sequencing and DNA 
sequencing can generate artifactual DNA sequences that do not exist 
in the actual biological system, which results in increased false posi‐
tive rate and inflated diversity (Alberdi et al., 2019). Consequently, in 
order to account for insufficient, biased and zero‐inflated data, and 
thus produce reliable diversity assessments from molecularly char‐
acterized samples using Hill numbers, we encourage researchers to 
consider the following recommendations: (1) acknowledge, (2) assess, 
(3) correct and (4) model.

The essential initial step is to acknowledge the expected proper‐
ties of the biological system to be studied, as well as the technical and 
statistical procedures to be employed, so that a correct study design is 
implemented. For example, in intraspecific analyses diet data tend to be 
more sparse than gut microbiome data at the OTU level, because while 
the intestinal microorganism community barely changes from one day 
to another, the diet at the OTU level can be completely different (Figure 
S2). In contrast, each sample in a diet data set tends to be less diverse 
than in a microbiome study. These differences will require different 
study designs and methodological procedures (e.g., incidence‐based vs. 
abundance‐based) to be employed, to ensure appropriate characteriza‐
tion of each system. Acknowledging the potential bias and error sources 
of the technical procedures is also essential, because the optimal study 
design will also depend on the procedures employed. Additionally, PCRs 
are known to exhibit certain degree of stochasticity (Alberdi et al., 2018) 
and the effect of sequencing runs can be as large, or even larger, than 
the actual biological signal (Chase et al., 2016).

Once the data are generated it is necessary to assess whether it is 
correct to address the research question. An essential procedure is to 
assess the completeness of the data both within each sample (sequenc‐
ing depth, i.e., number of DNA sequences used to characterize each 
sample) and across samples (sample size, i.e., number of sample units 
used to characterize the system). The R packages iNext (Hsieh, Ma, & 
Chao, 2016) and iNextPD (Hsieh & Chao, 2017) offer tools based on Hill 
numbers and phylogenetic Hill numbers, respectively, to perform such 
operations efficiently with abundance and incidence data. The abun‐
dance approach is useful for assessing whether the sequencing depth 
of each sample is adequate, and the incidence approach enables sam‐
ple size completeness estimations, although without considering the 
within‐sample abundance distributions of the OTUs. An alternative ap‐
proach to assess sample size completeness based on abundance (rather 
than incidence) data is to rarefy the gamma diversities of the study 
system at different sample sizes. This can be applied to both Hill num‐
bers and phylogenetic Hill numbers, although the latter might require 
extensive computation time if the number of OTUs and samples is high.

The critical assessment of the data should drive researchers to 
take action to correct the data. If resources are available, increasing 
sequencing effort in undersequenced samples is usually possible, as 
only a fraction of the library is often sent to sequencing. This can min‐
imize the impact of false zeros to a certain degree, yet it is essential 
to highlight that increased sequencing effort cannot recover diversity 
lost due to laboratory bottlenecks or PCR stochasticity (discussed 
in Alberdi et al., 2019). Sample size limitations and biases are more 
difficult to overcome, as obtaining more samples is often very costly 
or impossible. The impact of PCR stochasticity can be minimized by 
performing PCR replicates, and primer amplification biases can be 
moderated by lowering annealing temperatures or complementing 
the data with another primer set known to have different inherent 
biases (Alberdi et al., 2018). Multiple strategies to minimize the impact 
of artifactual sequences have been proposed, including the removal 
of DNA sequences below a certain count threshold, the use of PCR 
and sequencing replicates to enable constraining analyses only to se‐
quences present in multiple replicates (Alberdi et al., 2018), and iden‐
tification and removal of artifactual sequences by statistical means, 
either while bioinformatic processing of the sequences (Callahan et 
al., 2016), or when carrying out diversity analyses (Chiu & Chao, 2016).

In most cases, data sets cannot be completely corrected or com‐
pleted; hence, researchers need to rely on modelling to obtain ap‐
proximations for real diversity values. Diversity partitioning based 
on Hill numbers enables unequal sample sizes to be accounted for 
when comparing different systems, through applying different 
weights to the subsystems (Table 2). If the data are proven to be 
insufficient, the aforementioned R packages iNext and iNextPD en‐
able extrapolation of rarefaction curves based on Hill numbers, to 
estimate the actual diversity of each sample (using abundance ap‐
proach) or the whole system (using incidence approach) for orders of 
diversity 0, 1 and 2. Alternatively, another method to perform such 
estimations on any low order of diversity (q ≤ 3), and hence enable 
ploting continuous diversity profiles, is implemented in the R pack‐
age SpadeR (Chao & Jost, 2015).
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These approaches enable some shortcomings of insufficient data 
to be addressed, although the issue of imperfect detection remains. It 
is well known that the probability to detect organisms depends on their 
abundances, but also on biological properties inherent to each organ‐
ism. Occupancy‐modelling approaches have traditionally been applied 
to overcome such detectability biases (MacKenzie, Nichols, Hines, 
Knutson, & Franklin, 2003). In molecularly characterized systems, the 
issue of detectability is even more complex, because in addition to the 
biological distortions of environmental DNA (Barnes & Turner, 2016), 
there is another important source of bias produced by uneven primer 
amplification rates (Piñol et al., 2019). While eDNA representative‐
ness assessment might be too complex to model (Alberdi et al., 2019; 
Barnes & Turner, 2016), amplification biases can be measured in silico 
(Piñol et al., 2019) and using mock communities (Lamb et al., 2019). 
This enables implementing occupancy‐modelling approaches that ac‐
count for the relative amplification probability of OTUs (Ficetola et al., 
2015), which have also been implemented within the framework of 
Hill numbers (Broms, Hooten, & Fitzpatrick, 2015; Iknayan, Tingley, 
Furnas, & Beissinger, 2014). These approaches are still in its infancy, 
but are likely to undergo a rapid development in the upcoming years.

9  | CONCLUSIONS

The extensive framework recently developed around Hill numbers 
provides a powerful toolset for the integrative analysis of multiple 
aspects of biological diversity. This approach could be applied in 
a wide range of scientific fields, under different ecological frame‐
works, such as community ecology or niche theory. As explained in 
this article, molecular data enable exploiting the full potential of this 
framework in a rather simple and straightforward way. It must be 
noted that the methods explained here are simply a practical over‐
view of a more complex and broader statistical framework, which 
can be consulted in detail in several excellent reviews (e.g., Chao, 
Gotelli, et al., 2014b; Chao et al., 2016). Overall however, we hope 
that our piece and associated examples will encourage molecular 
ecologists to take advantage of Hill numbers, and in doing so be able 
to generate more logical, intuitive and reproducible results that will 
serve to improve the reliability and usefulness of their research.
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