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1 | INTRODUCTION

| M. Thomas P. Gilbert®?

Abstract

With the advent of DNA sequencing-based techniques, the way we detect and meas-
ure biodiversity is undergoing a radical shift. There is also an increasing awareness of
the need to employ intuitively meaningful diversity measures based on unified statis-
tical frameworks, so that different results can be easily interpreted and compared.
This article aimed to serve as a guide to implementing biodiversity assessment using
the general statistical framework developed around Hill numbers into the analysis of
systems characterized using DNA sequencing-based techniques (e.g., diet, microbi-
omes and ecosystem biodiversity). Specifically, we discuss (a) the DNA-based ap-
proaches for defining the types upon which diversity is measured, (b) how to weight
the importance of each type, (c) the differences between abundance-based versus
incidence-based approaches, (d) the implementation of phylogenetic information into
diversity measurement, (e) hierarchical diversity partitioning, (f) dissimilarity and
overlap measurement and (g) how to deal with zero-inflated, insufficient and biased
data. All steps are reproduced with real data to also provide step-by-step bash and R

scripts to enable straightforward implementation of the explained procedures.
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taxonomic means (Blaxter et al., 2005), and it is easier than ever to

account for the degree of (dis)similarity between the operational

DNA sequencing-based tools are becoming one of the most pop-
ular approaches with which to detect and measure biodiversity in
a wide range of natural systems (Bohmann et al., 2014). For exam-
ple, studies spanning questions from dietary assessments (Alberdi
et al., 2019) to microbiome analyses (Peterson et al., 2009) and
ecosystem-level biodiversity studies (Bush et al., 2017) have ad-
opted over the last decade molecular approaches based on me-
tabarcoding (Deiner et al., 2017), and increasingly today, shotgun
sequencing (Quince, Walker, Simpson, Loman, & Segata, 2017).
This methodological shift has changed, or at least complemented,
the way we measure biodiversity (Taberlet, Coissac, Pompanon,
Brochmann, & Willerslev, 2012). For example, operational units

for measuring diversity are no longer necessarily defined through

units detected in diversity measurement (Pavoine, Bonsall, Dupaix,
Jacob, & Ricotta, 2017).

Researchers often need to quantify how diverse different sys-
tems are, for example, to assess ecosystem functioning (Cardinale,
Palmer, & Collins, 2002) or to measure any species' niche breadth
(Forister et al., 2015). It is also common to compare the composition
of different systems, under experimental set-ups to measure the dif-
ferences yielded by different treatments (e.g., Gevers et al., 2014),
or in observational designs to assess whether and how much dietary
niches differ (e.g., Kartzinel et al., 2015). A myriad of approaches
and tools has been developed over the last century to perform such
operations, each embedded within a statistical background, with

popular examples including Shannon index (Shannon, 1948), Rao's
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quadratic entropy (Rao, 1982), Pianka's niche overlap (Pianka, 1974)
and Unifrac distances (Lozupone & Knight, 2005).

Regardless of the specific approach implemented, researchers
need to make at least four essential choices when analysing the
diversity of a biological system. First, they must define the unit
that encompasses biologically alike entities to be used to measure
diversity, hereafter referred to as the “type”. Although community
ecologists have traditionally measured diversity using the taxonomic
species as the type (Pielou, 1966), with the implementation of mo-
lecular approaches, this is no longer a general rule (Blaxter et al.,
2005). Second, it is necessary to consider how detections of these
types are treated, either as presence/absence (=incidence) or quan-
titatively (=abundance), and if the latter, how abundant and rare
detections are weighed (Jost, 2006). Third, researchers need to con-
sider whether, and how, the phylogenetic—or ecological—relations
between detected organisms will be accounted for when measur-
ing diversity (Chao, Chiu, & Jost, 2014a). Finally, researchers should
ideally assess whether the data are representative of the biological
system studied, and if needed, take the necessary measures to cor-
rect the biases.

Making the right choice requires acknowledgement of the es-
sential concepts and differences between the available approaches,
because the final results might depend on the decisions research-
ers make to measure biodiversity. Given the plethora of metrics
available, and since the incorporation of complex attributes like
phylogenies increases the level of abstraction, there is an increas-
ing awareness of the need to implement intuitively meaningful di-
versity measures rather than abstract indices, as the latter can be
easily misused and misinterpreted (Jost, 2006; Leinster & Cobbold,
2012; Lucas et al., 2017; Tuomisto, 2010a). In this regard, consid-
erable effort has recently been dedicated to creating frameworks
that unify and generalize popular indices (Chao, Chiu, et al., 2014a;
Jost, 2006; Tucker et al., 2017). One particularly relevant frame-
work is the so-called “Hill numbers” which encompass the group
of diversity measures that quantify diversity in units of equivalent
numbers of equally abundant OTUs or species (Hill, 1973).

As explained throughout this article, Hill numbers provide a
general statistical framework that is sufficiently robust and flexi-
ble to address a wide range of scientific questions that molecular
ecologists regularly try to answer through measurement, estimation,
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partitioning and comparison of diversities (Chao, Chiu, et al., 2014a;
Jost, 2006; Tuomisto, 2010a). Hence, this article aims to serve as
a conceptual and practical guide for diversity analysis of systems
characterized using DNA sequencing-based techniques, taking
advantage of the benefits provided by molecular tools and diver-
sity analyses based on Hill numbers. With an eye to facilitating its
application by a wide range of researchers, example data files and
functions are provided as Supporting information, and the scripts
needed to reproduce the analyses explained throughout the article

are presented and explained in the Appendix S1.

2 | DEFINING TYPES FOR DIVERSITY
QUANTIFICATION

The first step researchers need to make when assessing the biodi-
versity ofasystemistodefinethetypes(Krebs,2014). Incommunity
ecology, individuals (i.e., recorded entities) have been traditionally
classified into taxonomic species (i.e., types) (Figure 1). Therefore,
diversity measurements have commonly been carried out at spe-
cies level (e.g., species richness and species diversity), principally
as determined based on morphological features (MacArthur, 1965;
Pielou, 1966). The implementation of DNA-based molecular ap-
proaches now enables (in principle) diversity to be measured at
a much finer scale—that of DNA sequence variation. Although
genetic differentiation might sometimes be decoupled from eco-
logical differences (Pavoine et al., 2017), multiple reasons render
it an appropriate element with which to characterize biological
diversity. First, there is a strong link between phylogeny and vari-
ation in morphological and functional traits (Felsenstein, 1985;
Nipperess, Faith, & Barton, 2010). Second, genetic variation is the
basis upon which evolution generates biological diversity (Mayr &
Provine, 1998). Third, it confers the possibility to objectively and
systematically define operational units (Blaxter et al., 2005), over-
coming problems relating to subjective perception of morphologi-
cal traits (Hey, Waples, Arnold, Butlin, & Harrison, 2003). Fourth,
such methods increase the efficiency of the analysis of highly di-
verse systems, because laboratory procedures can be roboticized
and bioinformatic steps automated (Alberdi et al., 2019). For all
these reasons, molecularly defined types, broadly known as OTUs
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FIGURE 1 Diversity assessment procedures in traditional and DNA sequencing-based approaches. Recorded entities need to be
classified into types, before each type is weighed according to its relative abundance and the order of diversity (g). Note the example refers

to an abundance-based, rather than incidence-based, approach
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or MOTUs (molecular operational taxonomic units, Blaxter et al.,
2005), are becoming the preferred types with which to quantify
diversity in many fields of the biological sciences.

When using molecular approaches, the recorded entities are no
longer individuals, but DNA sequences, and the classification into
types is not any longer based on morphological features, but the
level of dissimilarity between DNA sequences. Currently, metabar-
coding is the most popular approach with which to characterize the
diversity in samples containing DNA derived from complex commu-
nities (Deiner et al., 2017). Using this method, the amplification and
subsequent sequencing of short (usually between 50 and 500 nucle-
otides) targeted molecular markers yields multiple presumably ho-
mologous sequences that are directly comparable to each other (but
see section on zero-inflated, insufficient and biased data). Although
each of the different sequences (recorded entities) could be consid-
ered a different type (Callahan et al., 2016), usually similar sequences
are clustered according to user-defined similarity thresholds to gen-
erate OTUs that encompass sequences within a certain degree of
similarity (Caporaso et al., 2010; Schloss et al., 2009). One of the
aims of clustering is to adjust the defined types to approximately
represent biological species, so as to yield diversity measurements
that resemble traditional species level analyses (Hebert, Cywinska,
Ball, & deWaard, 2003). Typically, an identity value of 97% has been
suggested as a standard threshold for considering the average ge-
netic dissimilarity level across species (Caporaso et al., 2010; Schloss
et al., 2009), although clearly this does change across taxa and ge-
netic marker (Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Kim, Oh,
Park, & Chun, 2014). While clustering is useful for analyses in which
intraspecific diversity is largely irrelevant (such as diet assessments),
it entails a loss of potentially useful information for most biodiversity
analyses (Pavoine & lzsak, 2014), as fine-scale variation can differen-
tiate pathogenic from commensal bacterial strains (McElroy, Zagordi,
Bull, Luciani, & Beerenwinkel, 2013) or be informative of population
structure (Rosen, Davison, Bhaya, & Fisher, 2015), for instance.

With the implementation of molecular approaches, the defini-
tion of types becomes more objective, as types are defined based on
mathematical criteria applied to simple DNA sequences, rather than
assessments of complex morphological traits. However, as types
can be defined using different algorithms and parameters (Rideout
et al., 2014), and the employed approach has a large impact on the
results (Alberdi et al., 2018), authors need to provide detailed infor-
mation (ideally full codes) about the approaches and criteria used
to define types in order for studies to be reproducible. If authors
publish the raw sequence data, others can choose different criteria
to define types and re-analyse the diversity of a system to ensure

comparability.

3 | WEIGHING THE IMPORTANCE OF
TYPES

Diversity measurements require assignment of an importance value

to each of the detected types. In traditional community ecology, this

has been done using metrics such as individual counts, biomass or
spatial units, depending on the type of system, research question
and fieldwork strategy. Molecular analyses provide a different type
of data that could provide such information, namely the amount of
DNA sequences assigned to each OTU (Deagle et al., 2019).

There are multiple approaches that enable differential weighing
of abundant and rare OTUs. The simplest measure of diversity is OTU
richness (Mclntosh, 1967). As this only considers whether an OTU is
present or absent in the system, abundant and rare OTUs are given
the same weight. However, the multiple OTUs present in a system
are seldom distributed evenly; thus, richness is rarely the best ap-
proach with which to reflect the diversity of a system. Consider for
instance, a simple system characterized with 1,000 sequence reads,
in which 990 belong to OTU1 and 10 to OTU2. This would yield a
richness value of 2, even though the system is overwhelmingly dom-
inated by OTU1. Thus, metrics such as the Shannon or the Simpson
indices, which also account for the evenness of the system, are con-
sidered more representative of the diversity of a system. It is critical
to note, however, that unlike richness, neither the Shannon index
nor the Simpson index are actual measures of diversity. The former
measures entropy thus yields the uncertainty in the OTU identity
of a randomly chosen sequence in the system. The latter provides
the probability that two randomly chosen DNA sequences actually
belong to different OTUs (Chao, Chiu, et al., 2014a). Consequently,
the values that Shannon and Simpson indices yield are difficult to
interpret—the values in the previous example are 0.056 and 0.020,
respectively, and do not exhibit the intuitive properties ecologists
expect from a diversity measurement.

Specifically, our intuitive notion of diversity would expect that
when doubling the number of OTUs in a system, then the diversity
measured should also double. This is known as the “doubling prop-
erty” or “replication principle” (Chao, Chiu, & Jost, 2010; Hill, 1973;
Jost, 2006). For example, if the diet of one bat species is comprised
of 15 moth species with even abundances, and the diet of another
species encompasses 30 moths also with even abundances, intui-
tively we would conclude that the second bat's diet is twice as di-
verse (100% more diverse) as the first one. However, most diversity
indices lack this basic property. The Shannon entropy only increases
from 2.7 (15 species) to 3.4 (30 species), which might suggest a di-
versity gain of 26%, and the Simpson index only increases from 0.93
to 0.96, which might suggest a gain of barely 3%. Hence, treating
diversity indices as diversity values has noticeable practical conse-
quences, as they all vary in range and behaviour (Jost, 2006).

Fortunately, richness, Shannon index and Simpson index belong
to a single statistical framework, as they all are monotonic functions
of the basic sum U:Ef:lp?, that is, the sum of the relative abun-
dances of the types (p)) elevated to the g value (Jost, 2006; Keylock,
2005). This implies that Hill numbers (?D), or actual diversities, rather
than entropies or probabilities, can be formulated in terms of the

basic sum (?2) and the parameter g (R scripts in Appendix S1):
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FIGURE 2 Relation between system composition, raw diversity indices and Hill numbers, and diversity profiles. (a) The raw diversity
index values for g values O, 1 and 2, and their respective Hill numbers of four theoretical systems with different abundance distributions. In
al and a4, all types are evenly distributed; thus, the Hill numbers of all orders of diversity (g) are identical. In a2, as the relative abundances
of the types differ, the Hill numbers of order q > O are lower than the value for g = 0, which overlooks relative abundances. In a3, there are
five very abundant types and five very rare types. Consequently, the Hill numbers of order q > O are much lower than the value for g = 0,
approximate the number of abundant types, and better reflect the abundance distribution of the system. Note that in a2 and a3, the Hill
numbers decrease as the importance of abundant types is increased with higher g values. (b) The relation between the raw Shannon (b1)
and Simpson (b2) index values and their respective Hill numbers. The position of the four theoretical systems (a1-4) is shown in both cases.
(c) Diversity profiles that show the different components of the diversity (i.e., number of OTUs and their evenness) of the four theoretical

systems at a glance

This expression was first discovered by Hill (1973), hence the
use of the name “Hill numbers” to refer to the output of this for-
mula. Hill numbers have two major advantages over diversity indi-
ces: (a) the interpretation of the measure and its measurement unit
is always the same (Chao, Chiu, et al., 2014a; Tuomisto, 2010a),
and ii) the sensitivity towards abundant and rare OTUs can be
modulated with the parameter q. The expression yields a diver-
sity measure in “effective number of OTUs”, that is, the number
of equally abundant OTUs that would be needed to give the same
value of diversity (Hill, 1973; Jost, 2006). When all OTUs in a sys-
tem have the same relative abundances, as in the moth example
given above, the effective number of OTUs for all g values equals
the actual number of OTUs, namely richness (Figure 2a1). When
the relative abundances of the types vary however, then the ef-
fective number of OTUs for q > O values decreases (Figure 2a2).
The higher the heterogeneity between types, the lower the ef-
fective number of OTUs. In extreme cases in which the system is
dominated by a few equally abundant OTUs, the effective num-
ber of OTUs will approach the number of those abundant OTUs
(Figure 2a3).

The sensitivity towards abundant and rare OTUs can be
modulated using the scaling parameter g, known as the “order”
of diversity (Jost, 2006). The larger the g value, the higher the
importance attributed to abundant OTUs. Three g values are

particularly relevant, both for their significance, and their close

relationship to popular diversity indices: g=0,qg=1 and g = 2.
When a diversity of order zero (q = 0) is applied to the formula,
it becomes insensitive to OTU frequencies, thus yielding a rich-
ness value. As the relative abundances of OTUs are overlooked,
rare OTUs are overweighed. A g value of 1 (in practical terms its
limit, as the Hill number is undefined for g = 1) is the value that
weighs OTUs by their frequency, without disproportionately fa-
vouring either rare or abundant ones (Jost, 2006). The value it
yields is exactly the exponential of the Shannon index. In fact, g
values under unity favour rare OTUs, while values above one fa-
vour abundant OTUs (Keylock, 2005). When a q value of 2 is ap-
plied, abundant OTUs are overweighed, and the formula yields
the multiplicative inverse of the Simpson index. Indeed, common
diversity indices can be transformed to Hill numbers (also known
as numbers equivalents or true diversities sensu Jost, 2006), by
applying simple mathematical transformations (Table 1).

The numbers equivalents of the Shannon and Simpson indi-
ces in the 2-OTU example given above (OTU1 =990 sequences;
OTU2 = 10 sequences) would therefore be exp(0.056) = 1.05 and 1/
(1-0.020) = 1.02, respectively. These are the effective number of
OTUs for orders q=1 and q = 2, respectively. The fact that these
effective OTU values are close to 1 demonstrates that the system is
dominated by a single OTU (in this example 99% of the reads belong to
OTU1). The higher the g value, the lower the diversity value, because
the importance attributed to abundant OTUs increases. The relation
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TABLE 1 The three most common diversity and phylodiversity indices and the transformations to be carried out to obtain (phylogenetic)
Hill numbers of orders 0, 1 and 2. p; refers to the relative abundance of OTU i, B; refers to the tree depth (time interval if the tree is
time-calibrated) considered, L; refers to the length of branch i, and a; refers to the sum of relative abundances of OTUs descended from
branch i. Note that in the literature the diversity indices OH, 'H and 2H are often represented as S, H and D, respectively. R scripts to execute

all these equations are shown in Appendix S1

q Diversity index 9H
OTU diversity 0 Richnesss
OH=Y p?
i=1
1 Shannonsentropy
tH=- Y plinp}
i=1
2 Simpson ir;dex
2H=1-) p?
i=1
Lineage diversity 0 Faith’s ED
PD=Y L
i=1
1 Allen’s H,,
Hp=-Y L;a;loga;
i
2 Rao’s Q
Q=2 d;pip;
ij

between raw indices and diversities in more complex systems with dif-
ferent degree of heterogeneity is shown in Figure 2.

The ability to modulate the sensitivity towards abundant and
rare OTUs by modifying a single parameter (g) is a useful means with
which to adjust diversity measurements to the type of data and re-
search question. For example, when rare types are considered to be
of low importance (e.g., when attempting to define a core diet or mi-
crobiome), or when rare types are considered untrustworthy due to
technical issues (e.g., PCR or sequencing errors), researchers might
opt for using a high g value, for example, g = 2, which overweighs
abundant OTUs. The result can be interpreted as the effective num-
ber of dominant OTUs in the system (Chao, Chiu, et al., 2014a). In
contrast, if rare types are considered essential for the system, or re-
searchers do not trust the relative abundance data due to potential
technical biases, researchers might opt for using a g value of O that
simply counts the number of types.

Hill numbers also enable diversity profiles of systems and sub-
systems to be plotted as continuous functions of the parameter g
(Figure 2c). This is useful to characterize the OTU abundance distri-
bution of a system, as different compositions and abundance distribu-
tions can yield the same value for a particular order of diversity (e.g.,
q = 1), but not for many of them (e.g., g = 0,9 = 0.5 and q = 1). Hill num-
bers convey all information contained in a species abundance distribu-
tion at a glance (Chao, Chiu, et al., 2014a; Leinster & Cobbold, 2012).

4 | ABUNDANCE-BASED VERSUS
INCIDENCE-BASED APPROACHES

Although the Hill number framework was originally developed to

deal with relative abundance data (i.e., relative number of sequences

Hill number in terms of 9H

Richness

1D (T) =exp (Hp/T)

2D(M=1/ (1-Q/T)

Hill number 9D

s 1/(1-0)
(i)
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s
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ieBy

assigned to each OTU), it has recently also been applied to inci-
dence data. This means that the relative abundances of the types
detected in each of the subsystems (=samples) belonging to a cer-
tain system are overlooked, and the diversity of the system is cal-
culated by computing the relative number of detections of a given
type across the whole system (Figure 3). Although incidence data
are less informative than abundance data, it is both easier to collect,
more comparable, and has been extensively used under the niche
theory framework (Box 1). When dealing with DNA-derived data,
incidence-based approaches have particular relevance, given the
limited quantitative relationship that exists between the biomass in
the actual system and the DNA sequences produced (Lamb et al.,
2019), which might challenge the representativeness of abundance
data. However, consensus has not been reached within the molecu-
lar ecology research community about which approach is the most
appropriate, as simulations have shown that analyses based on in-
cidence data often overestimate the importance of rare OTUs, and
abundance data might provide a more accurate view of the diversity
even with moderate recovery biases (Deagle et al., 2019).

While either approach might be valid depending on the research
question and the study design, it is important to acknowledge the
basic differences between abundance-based and incidence-based
Hill numbers. In the abundance-based approach, the unit used to
compute diversity is the count of DNA sequences assigned to each
OTU. In contrast, in the incidence-based approach, the count of
subsystems in which an OTU is present is used to compute diver-
sity. Thus, abundance-based Hill numbers with different orders of
diversity can be computed for both subsystems (=samples) and en-
tire systems (see section about diversity partitioning for details),
whereas incidence-based g > 0 Hill numbers are only meaningful

for entire systems (=pool of samples). The diversity of a system
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FIGURE 3 Differences between abundance-based and incidence-based Hill numbers. The Hill numbers yielded for the entire system
are different depending on the approach employed. In abundance-based approaches, the DNA sequence is the unit that the diversity is
computed on, while in incidence-based approaches, it is the sample the unit upon which the diversity is measured. (*) The asterisk indicates
that the equations are undefined for g = 1, thus in practice either the *D formula shown in Table 1 or a limit of the unity must be used, for
example, g = 0.9999. However, g = 1 is used for the sake of simplicity

Box 1 Incidence-based diversity analysis under the ecological niche framework

Dietary niche breadth and niche overlap are two concepts at the heart of the ecological niche theory. When diversity is measured
within the framework of niche theory, it takes the name of niche breadth, niche width or niche size (Colwell & Futuyma, 1971), while
the degree of similarity between two (or more) contrasting niches is known as niche overlap (Hurlbert, 1978). Surprisingly, Hill numbers
are not explicitly used in the niche theory literature, although many approaches to measure niche breadth and overlap are closely re-
lated. Most statistical approaches employed within the niche framework rely on incidence, rather than abundance, data. In fact, one
of the most popular indices to measure niche breadth, namely the Levins' index (Levins, 1968), is the incidence-based Hill number of
order of diversity g = 2. Hence, the implementation of incidence-based Hill numbers in niche breadth characterization seems com-
pletely natural and useful, as it enables characterization of the observed diversity in a more complete and straightforward way than
when using abstract indices, as explained throughout the main text. Naturally, the Hill number framework can also be used to compute
niche overlap between two or more systems (e.g., predator species), and even explore phylogenetic relations between types (e.g., prey
OTUs), by implementing the diversity partitioning approach explained in the main text, and deriving similarity from beta diversity

values using the formulae shown in Table 2.

measured using abundance and incidence approaches converge
when g = 0, but they yield different diversity values when g >0
(Figure 3). This happens because the two approaches measure
different properties. Abundance-based Hill numbers measure the
effective number of equally abundant OTUs in the system, while
incidence-based Hill numbers measure the effective number of

equally frequent (across subsystems) OTUs in the system.

5 | ACCOUNTING FOR RELATEDNESS
BETWEEN TYPES

The traditional and still most broadly used diversity indices, as well
as their corresponding Hill numbers, assume that all types are equally
(dis)similar; that is, types are treated as discrete elements with no

correlation among them. Such measures have been coined as neutral

or species-neutral measures of diversity (Chao et al., 2010; Marcon &
Hérault, 2015). This implies that, for example, a system (e.g., dietary
sample) comprised of four Noctua moths (Insecta, Lepidoptera) with
even abundances has the same diversity as another system evenly
composed of two Noctua moths and two Carabus beetles (Insecta,
Coleoptera). Obviously, in ecological terms, a system holding moths
and beetles is more heterogeneous than a system composed solely of
moths. Although ecologists realized this pitfall long before molecular
tools were implemented into the study of community ecology (Pielou,
1975), it was only in the last decade that a general framework of non-
neutral measures of diversities was developed, based on the trait-
based or phylogenetic relations between detected OTUs (Chao, Chiu,
et al., 2014a). In this article, we will focus on the latter due to its more
straightforward applicability to molecularly characterized systems.
Each principal diversity index (e.g., richness, Shannon index and

Simpson index) has an equivalent phylodiversity index (Chao et al.,
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TABLE 2 Diversity and phylodiversity partitioning into «, # and y components based on Hill numbers, and four similarity measures
derived from the resulting p-diversities. In the diversity partitioning equations, N refers to the number of subsystems (samples), j refers to
each subsystem, S refers to the number of OTUs, i refers to each OTU, w; refers to the relative weight of subsystem j (in case of even weighs
itis 1/N), p, refers to the relative abundance of OTU i, T refers to the considered tree depth which for ultrametric trees is reduced to tree
length, B, refers to the considered tree depth (time interval if the tree is time-calibrated) considered, L, refers to the length of branch i, and a,
refers to the sum of relative abundances of OTUs descended from branch i. Note that to calculate Hill number of order 1, the actual order of
diversity to be used needs to be a limit of the unity rather than the number one itself, or a different equation must be used as shown
elsewhere (Chao et al., 2010; Jost, 2006). R scripts to execute all these equations are shown in Appendix S1

Diversity partitioning

Alpha s N 1/(1-a) Jost (2007), Chao et al. (2012); Chiu
qDa=% {,-_21]_21 (wjp‘.}.)q} etal. (2014)
Gamma s /N a~ 1/(1-a)
i=1 \j=1
Beta 9D,;=9D, /D,
Phylodiversity partitioning
Alpha N q 1/(1-q) Chiu et al. (2014), Chao et al. (2016)
D, (T)= 1 L. i
Gamma . N a1 V(-9
qDy(T)=% [ L <Zi:1TWiaU> ]
ieBr
Beta 9D,(T) =D, (T)/%D,,(T)

Similarity measurement derived from g-diversities based on Hill numbers (for both diversity and phylodiversity). Dissimilarity measures are their
one-complements (1 —XqN)

Sgrensen-type overlap [(2/2D,)" -(u/n)™] MacArthur (1965), Harrison et al.
N T ] (1992), Jost (2006, 2007), Chiu et al.
(2014), Chao et al. (2016)
Jaccard-type overlap U [(1/2D,)" " (1/N)"™]
Sgrensen-type turnover-complement Vo= (N-Dy)
aN= "(N-1)
Jaccard-type turnover-complement g = (4/9D,~1/N)
aN = T(1-1/N)
(a1) (a2) (a3) (b1) 304
2 R Diversity
— g
= | g
» 2
- I3
= 2
|| L
) (b2) 8
4 P Phylodiversity
r— .g @ 6 Non-neutral
28
" Mems ' Mca1 | Rhis 28
F - e - { = | . =] e g q6
0 02 0.4 0608 ’—‘(: 0.2 04 0.6 0.8 I E .
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abundance abundance abundance Order of diversity

FIGURE 4 Phylogenetic trees and relative OTU abundances of samples and their corresponding diversity and phylodiversity profiles.

(a) Relative abundances and phylogenetic relationships of the OTUs detected in three bat faecal samples. Phylogenetic trees include all the
OTUs detected in the three samples, and the lineages detected in each sample are coloured and bolded. (b) Diversity and phylodiversity
profiles that describe the three samples as a function of the order of diversity (g). Mca1l is the sample with the highest richness, although the
dominance (relative abundance of 0.80) of one of the OTUs drops the diversity values when g > O. In contrast, Mem3 contains less OTUs,
but their even distribution yields higher g > O diversity values
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2010; Pavoine, Love, & Bonsall, 2009). These are Faith's PD (Faith,
1992), Allen's Hp (Allen, Kon, & Bar-Yam, 2009) and Rao's Q (Rao,
1982), respectively (Table 1). Similar to Jost's (2006) work with di-
versity indices, Chao et al. (2010) unified the different phylodiversity
indices around the Hill numbers, yielding the so-called phylogenetic
Hill numbers. Within this framework, the units of diversity are nei-
ther OTUs nor species, but rather branch segments or lineages as
defined by a phylogenetic tree (Figure 4a). In fact, the phylodiversity
measure incorporates three types of information: the tree's branch-
ing pattern, the relative branch lengths and the relative abundances
of each node/branch (see Chao et al., 2010 for a detailed explana-
tion). It is formulated as follows:

D= (T, 7o) " a#1 @

In this equation, B; is the set of all branches or the ones within
the depth (T) considered for the analyses in the phylogenetic tree,
L; is the length of the branch i, and g, is the sum of relative abun-
dances of all OTUs descended from branch i. Hence, the abun-
dance-based phylogenetic Hill numbers are measured in units of
the effective number of equally abundant and equally distinct
lineages (Chao et al., 2010; Chao, Gotelli, et al., 2014b). For two
systems with identical number of types and relative abundances,
the one with the deepest branches (largest phylogenetic differ-
ences across types) will be the one with the highest phylodiver-
sity. Besides, the phylodiversity value will always be lower than its
related OTU diversity (Chao et al., 2010), except in the imaginary
case in which the phylogenetic tree is star-shaped, that is, with all
equal-size branches radiating from the root, in that case the phylo-
diversity value is equal to the diversity value. It must be noted that
ap(T), which yields the effective number of lineages, expresses a
generalized mean of Hill numbers rather than a genuine Hill num-
ber (Chao, Chiu, & Jost, 2016). Thus, it is more accurate to refer to
it as the mean phylogenetic diversity (Chao et al., 2010). In order to
obtain the total phylogenetic diversity, 9D(T) needs to be multiplied
by tree depth (T), which if specified in years, yields a Hill number
of order g during the time interval from T years ago to the present,
that is, the effective number of lineage-years (Chao et al., 2010).
Similar to the diversity profiles mentioned before (Figure 2b,c), it
is also possible to plot the phylogenetic Hill numbers as a function
of T (Figure S1), which indicates the distribution of the phyloge-
netic diversity across the OTU tree (Chao et al., 2010). If the OTU
tree exhibits very recent radiation, the phylogenetic diversity will
decrease rapidly (Figure S1a), while if the phylogenetic tree shows
a deep branching pattern, the mean phylogenetic diversity will re-
main high until approaching the root of the three (Figure S1b).

The phylogenetic Hill numbers are based on trees (usually ul-
trametric) in which the relations between OTUs are established. A
major advantage of metabarcoding is that phylogenetic trees can
be directly built using the homologous DNA sequences or OTU
representative sequences generated. This could liberate research-
ers from having to assign taxonomy to the DNA sequences in order
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to incorporate phylogenetic data to the diversity measurement and
enables piping commands to automatize the process of the analysis
of diversity, as shown in the Appendix S1. However, building phy-
logenies from metabarcoding data have its limitations, as discussed
in Box 2.

6 | PARTITIONING DIVERSITY INTO «, p
AND y COMPONENTS

In ecology, the idea of diversity has been traditionally broken
down into three components: alpha (a), beta () and gamma (y)
diversities (Whittaker, 1960). In general terms, a-diversity refers
to the average diversity of subsystems or samples (although see
discussion about the different a-diversities in Chao, Chiu, & Hsieh,
2012), p-diversity measures the differences between subsys-
tems (although see discussion about the different g-diversities in
Tuomisto, 2010a), while y-diversity includes the entire diversity
of the system (Figure 5). Despite the existence of different ap-
proaches for diversity partitioning, within the framework of Hill
number diversity partitioning responds to a multiplicative defini-
tion qu =D, x D, (Chao et al., 2012; Jost, 2007); that is, beta di-
versity is obtained by dividing gamma diversity by alpha diversity.
This formulation has three properties that ecologists intuitively
expected from a diversity measurement: (a) alpha and beta com-
ponents are unrelated; thus, a high value of alpha does not force
the beta component to be high and vice versa, (b) gamma is com-
pletely determined by alpha and beta, and (c) alpha is never greater
than gamma. The alpha, gamma and beta components based on
Hill numbers of order g are obtained using the equations shown
in Table 2 (Chao et al., 2012; Jost, 2006), which despite their ap-
parent complexity, can be easily computed using the R functions
shown in Appendix S1. Alpha, beta and gamma diversities can
also be computed including phylogenetic information (Chiu, Jost,
& Chao, 2014) and can be used to decompose biological systems
with multiple hierarchical levels (Gaggiotti et al., 2018).

It must be highlighted though that the alpha diversity is not ob-
tained by averaging the Hill numbers of the subsystems, but comput-
ing the Hill numbers from the averaged basic sums of the subsystems
(Chaoetal., 2012). In contrast, gamma diversity is obtained by taking
the average of OTU relative abundances across subsystems and then
computing the Hill numbers of the pooled system. Although beta
diversity is often used to vaguely refer to any kind of compositional
heterogeneity among systems (Barwell, Isaac, & Kunin, 2015; Chao,
Chiu, et al., 2014a; Tuomisto, 2010a,2010b), when diversity parti-
tioning is carried out using Hill numbers, beta diversity is an actual
diversity value that measures the effective number of equally large
and completely distinct subsystems in a system. However, the Hill
number beta diversity can also be interpreted as a unitless scalar
that quantifies the ratio of diversities between two levels (alpha
and gamma) of observation; thus, it also quantifies how many times
richer an entire system is in effective OTUs (gamma diversity) than
its constituent subsystems are on average (alpha diversity) (Figure 5).
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Box 2 Obtaining reliable phylodiversity measurements from metabarcoding data

Metabarcoding enables phylogenetic diversities to be computed directly from OTU representative sequences. However, at least three
important issues must be considered so as to obtain reliable phylogenetic diversity values. First, some OTUs might not be of interest for
diversity measurement of, for instance, microbiomes or diets. Even when primers are taxon-specific, non-targeted taxa might also be
amplified and sequenced (Alberdi et al., 2018). On the one hand, there are organisms that usually appear at low abundance; examples
could be eukaryotic intestinal parasites when characterizing microbiomes from gut contents, or skin acari when studying diet from fae-
ces. These organisms do not usually introduce large distortion to g > O diversity measurements, as their relative abundances tend to be
low, but if they are not detected and excluded, they can considerably inflate the phylodiversity measures, given that they tend to be
distantly related to the intended targets. On the other hand, some metabarcoding primers might amplify and sequence host or predator
DNA from which samples have been acquired, which in certain cases can account for the majority of the sequence reads (Alberdi et al.,
2018; Galan et al., 2018), thus completely distorting diversity and phylodiversity measurements in analyses with g > O values. Hence, we
strongly advise taxonomic assignment to the OTU sequences, and application of a relaxed filter based on low similarity values (e.g., 90%)
to reference sequences, so as to exclude OTU sequences assigned to non-targeted taxonomic groups.

Another major issue is the low robustness of phylogenetic trees generated from metabarcoding sequences. The combination of short
DNA sequences (often < 200 bp) and abundant OTUs (often > 1,000), as usually generated in metabarcoding studies, yields phyloge-
netic trees with very low node support, indicating high phylogenetic uncertainty (Douady, Delsuc, Boucher, Doolittle, & Douzery, 2003).
Phylogenetic uncertainty means that multiple trees have shared probabilities of reflecting the evolutionary history of the organisms. As
each of these trees might yield different phylodiversity values (Figure S3a,b), it is advisable to implement approaches that account for
the uncertainty of the phylogenetic reconstructions used for diversity measurement. This enables probability distributions to be gener-
ated for the different orders of diversity (Figure S3c), as well as plotting of diversity profiles with confidence intervals (Figure S3d).
One option to account for phylogenetic uncertainty is to rely on Bayesian inference approaches (e.g., MrBayes, BEAST), in which node
support is based on a posterior probability distribution of trees. In a Bayesian analysis, a Markov chain Monte Carlo (MCMC) usually
with > 1-10 million steps begins from an initial tree (usually built using simple neighbour-joining or parsimony methods) and moves
through the parameter space searching for high-probability regions of the posterior. Trees are sampled at fixed intervals, and the poste-
rior probability of a given tree is approximated by the proportion of time that the chains visit it (Nascimento, Reis, & Yang, 2017). In the
long run, a successful Markov chain should reach a stationary distribution (Figure S4). Software such as MrBayes or BEAST output all
the trees samples across the MCMC chain, usually every 1,000 steps. Hence, as explained in Appendix S1, it is possible to skip the trees
sampled before the MCMC reached the stationary phase (known as burn-in), randomly sample a subset of trees from the resulting
MCMC chain, compute phylodiversity measurements based on different randomly samples trees and obtain the average and standard
error value that indicates phylogenetic uncertainty (Figure S3d). If the MCMC has reached a stationary distribution with low variance,
the sampled trees will be similar to each other, so they will be the phylodiversity results. In contrast, if the MCMC chain has not reached
a stationary distribution and/or the variance is high, the sampled trees will be different to each other, and hence, the variance of the
phylodiversity results will also increase.

Finally, it is essential to acknowledge that different markers might yield different phylogenetic trees, more so if their power for phylo-
geneticinference is low, as is the case for most markers employed for metabarcoding. This means that an identical community character-
ized with different molecular markers, evenin the ideal (yet likely unrealistic) case without PCR biases, could yield different phylodiversity
values. It is therefore advisable to avoid comparisons between the diversities of systems characterized using different molecular
markers.

The Hill number beta diversity always ranges from 1 (when all sub-
systems are identical) to the actual number of subsystems (when all
subsystems are completely different) (Chao, Chiu, et al., 2014a; Chiu
et al., 2014).

7 | MEASURING DISSIMILARITY

Researchers often need to quantify the (dis)similarity between
subsystems (e.g., dietary overlap between species, microbiome
differences between intestinal sections and community differ-
ences between habitats). Computing (dis)similarities is also a

necessary step prior to popular statistical methods such as NMDS
or ANOSIM. Dissimilarity indices range between 0 and 1; O indi-
cates that the subsystems compared are identical, while 1 indi-
cates that they are completely different. As the beta diversity lies
in between 1 and the total number of subsystems, the Hill number
beta diversity cannot directly be used to compute dissimilarities.
However, it is possible—and desirable—to remove the dependence
on the number of subsystems and compute dissimilarity measures
by applying simple transformations to beta diversity, both for di-
versities (Chao et al., 2012; Jost, 2007) as well as phylodiversi-
ties (Chao, Chiu, et al., 2014a; Chiu et al., 2014). Four classes of
similarity measures derived from Hill number beta diversities have
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D, explanation q=0 q=1 q=2

In each individual bat, 10.45
OTUs (prey) are found on
average, although diversities . R
are equivalent to even systems Y diversity 45
comprised of 1-2 OTUs,
suggesting samples are
dominated by a few OTUs.

a diversity 10.45]B 2.09 :Ip 1.53 ]ﬁ
4.31 043 4.52 703 J461

Interpretation 2: The effective
number of individual bats is
Interpretation 1: The diversity between 4.3 and 4.6 (depending
found at species level is ca. on q value), which means that

4.5 times higher (depending on q ¢4 4.5 individuals with completely
value) than that at individual bat  distinct diets would be needed to
obtain the measured gamma
diversity.

Dp explanation

comprised of 7-9 OTUs.

FIGURE 5 Explanatory example of hierarchical diversity partitioning. The system is comprised of 40 individual bats; thus, it has two

hierarchical levels: individual bats and overall community

been proposed (Table 2), from which dissimilarity measures can
be obtained by calculating their one-complements (1—XqN). The
Sgrensen-type classes quantify similarity from the perspective of
the subsystem, while the Jaccard-type classes quantify similarity
from the perspective of the overall system (Chao et al., 2019; Chiu
et al.,, 2014).

1. The Sgrensen-type overlap (CqN for diversity/éqN for phylodi-
versity) quantifies the effective average proportion of a sub-
system's OTUs (or lineages in the case of phylodiversities) that
is shared across all subsystems. This is thus a metric that
quantifies overlap from the subsystem's perspective. Its cor-
responding dissimilarity measure (1 - CqN) quantifies the effective
average proportion of nonshared OTUs or lineages in a system
(Chao et al., 2012; Chao, Jost, Chiang, Jiang, & Chazdon, 2008).

2. The Jaccard-type overlap (UqN/UqN) quantifies the effective pro-
portion of OTUs or lineages in a system that are shared across all
subsystems. Hence, this metric quantifies overlap from the per-
spective of the overall system. Its corresponding dissimilarity
(1- UqN) quantifies the effective proportion of nonshared OTUs
or lineages in the overall system.

3. The Sgrensen-type turnover-complement (VqN/VqN) is the comple-
ment of the Sgrensen-type turnover, which quantifies the normalized
OTU turnover rate with respect to the average subsystem (i.e., alpha),
thus provides the proportion of a typical subsystem that changes
across subsystems (Harrison, Ross, & Lawton, 1992; Jost, 2007).

4. The Jaccard-type turnover-complement (SqN/gqN) is the comple-
ment of the Jaccard-type turnover, which quantifies the normalized
OTU turnover rate with respect to the whole system (i.e. gamma).

These generalizations encompass, as special cases some of the
most popular (dis)similarity measures used in ecology (Chao, Chiu,
et al., 2014a; Chao et al., 2016; Jost, 2007). For instance, C, (the
Sgrensen-type overlap between two systems [N = 2] when OTU
phylogenies are not considered and g = 0) produces the Sgrensen
similarity index, while C,, (idem but g = 2) yields the Morisita-
Horn index. Another noteworthy example is that the measure
1- Uoz (the one-complement of the Jaccard-type overlap when
OTU phylogenies are considered, g =0 and N = 2) is identical to
the UniFrac distance (Lozupone & Knight, 2005). Further relations

between these four (dis)similarity measures and other popular in-
dices can be found elsewhere (e.g., Jost, 2007, Chao et al., 2012,
Chiu et al., 2014). If researchers opt for basing diversity measure-
ments on Hill numbers, as advocated in this article, it is also advis-
able to frame dissimilarity measurements within the same scheme.
Basing dissimilarity measurements on beta diversities derived
from Hill numbers enables logical consistency to be kept with the
conclusions based on Hill numbers (Chao et al., 2012; Jost, 2007).
Furthermore, as all measures are continuous as q ranges from zero
to infinity, (dis)similarity profiles can be made for any of them
(Chiu et al., 2014).

8 | DEALING WITH ZERO-INFLATED,
INSUFFICIENT AND BIASED DATA

All measures introduced throughout the article assume that the
parameters of the analysed system are well-known, that is, that
the OTU counts and relative abundances in the data set perfectly
mirror the biological system under study. In practice, however, due
to the high diversity of biological systems, their spatio-temporal
heterogeneity and the complexity of the data processing methods,
molecularly analysed systems are seldom characterized perfectly
(Alberdi et al., 2019). Hence, there is a high chance that the Hill
numbers calculated from the data differ from the actual diversity
of the biological system (Chao, Gotelli, et al., 2014b). In DNA-based
diversity assessments, there are three major interrelated sources
of distortion that need to be assessed and, if possible, addressed:
(a) zero-inflation, (b) insufficient and biased sample characteriza-
tion effort (low sequencing depth) and sample size, and (c) varying
OTU-detection probability.

The tendency to contain a large proportion of zero values is a
distinguishing characteristic of many ecological data sets (Martin
et al., 2005), but it is particularly relevant for DNA-derived data,
due to the capacity to recover very high diversities (often > 1,000
OTUs). Data sets that exhibit a distribution of OTU counts biased
towards a few dominant ones, and a “tail” of rare OTUs represented
by a few counts, are common in molecular data sets. While the dom-
inant OTUs tend to appear in many samples, the rare OTUs are often
sparsely distributed, yielding data sets with high number of zeros
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(Figure S2). When the high number of zeros produces the data do
not readily fit standard distributions (e.g., normal, Poisson, binomial,
negative-binomial), and thus complicate statistical analyses, the data
set is referred to as zero-inflated (Heilbron, 1994).

One of the main challenges of zero-inflated data is the unknown
nature of the zero values. Some might be true zeros due to the ab-
sence of the OTU in the system, yet others might be false zeros de-
rived from imperfect characterization. Temporal and spatial variability
of the distribution of OTUs can result in OTUs that actually occurin a
system, being absent during the sampling period. The high incidence
of such false zeros is the result of an insufficient or incorrect sampling
design, and it is very relevant in diet analyses, because each sample
usually contains just a fraction of the total prey range of a predator
(Aizpurua et al., 2018). Another source of false zeros is the imper-
fect characterization of samples; that is, the OTU is present in the
sample but not detected. This can occur because sequencing was not
deep enough to recover a DNA sequence with very low abundance
in the system, or because the bottlenecks during sample processing
remove the rare DNA sequences (Alberdi et al., 2019). Zero-inflation
is not the only issue of molecular diversity analyses though. Recently
conducted research has clearly documented how many biological and
technical distortion factors introduce numerous biases that break the
relation between the actual biomass distribution in the system and
the relative amount of DNA sequences obtained in the final results
(Barnes & Turner, 2016; Lamb et al., 2019). This is partly due to primer
amplification biases, and thus sequencing probability, due to the dif-
ferent binding affinity between primers and target sequences (Pifiol,
Senar, & Symondson, 2019). Finally, both PCR sequencing and DNA
sequencing can generate artifactual DNA sequences that do not exist
in the actual biological system, which results in increased false posi-
tive rate and inflated diversity (Alberdi et al., 2019). Consequently, in
order to account for insufficient, biased and zero-inflated data, and
thus produce reliable diversity assessments from molecularly char-
acterized samples using Hill numbers, we encourage researchers to
consider the following recommendations: (1) acknowledge, (2) assess,
(3) correct and (4) model.

The essential initial step is to acknowledge the expected proper-
ties of the biological system to be studied, as well as the technical and
statistical procedures to be employed, so that a correct study design is
implemented. For example, in intraspecific analyses diet data tend to be
more sparse than gut microbiome data at the OTU level, because while
the intestinal microorganism community barely changes from one day
to another, the diet at the OTU level can be completely different (Figure
S2). In contrast, each sample in a diet data set tends to be less diverse
than in a microbiome study. These differences will require different
study designs and methodological procedures (e.g., incidence-based vs.
abundance-based) to be employed, to ensure appropriate characteriza-
tion of each system. Acknowledging the potential bias and error sources
of the technical procedures is also essential, because the optimal study
design will also depend on the procedures employed. Additionally, PCRs
are known to exhibit certain degree of stochasticity (Alberdi et al., 2018)
and the effect of sequencing runs can be as large, or even larger, than
the actual biological signal (Chase et al., 2016).

Once the data are generated it is necessary to assess whether it is
correct to address the research question. An essential procedure is to
assess the completeness of the data both within each sample (sequenc-
ing depth, i.e., number of DNA sequences used to characterize each
sample) and across samples (sample size, i.e., number of sample units
used to characterize the system). The R packages iNext (Hsieh, Ma, &
Chao, 2016) and iNextPD (Hsieh & Chao, 2017) offer tools based on Hill
numbers and phylogenetic Hill numbers, respectively, to perform such
operations efficiently with abundance and incidence data. The abun-
dance approach is useful for assessing whether the sequencing depth
of each sample is adequate, and the incidence approach enables sam-
ple size completeness estimations, although without considering the
within-sample abundance distributions of the OTUs. An alternative ap-
proach to assess sample size completeness based on abundance (rather
than incidence) data is to rarefy the gamma diversities of the study
system at different sample sizes. This can be applied to both Hill num-
bers and phylogenetic Hill numbers, although the latter might require
extensive computation time if the number of OTUs and samples is high.

The critical assessment of the data should drive researchers to
take action to correct the data. If resources are available, increasing
sequencing effort in undersequenced samples is usually possible, as
only a fraction of the library is often sent to sequencing. This can min-
imize the impact of false zeros to a certain degree, yet it is essential
to highlight that increased sequencing effort cannot recover diversity
lost due to laboratory bottlenecks or PCR stochasticity (discussed
in Alberdi et al., 2019). Sample size limitations and biases are more
difficult to overcome, as obtaining more samples is often very costly
or impossible. The impact of PCR stochasticity can be minimized by
performing PCR replicates, and primer amplification biases can be
moderated by lowering annealing temperatures or complementing
the data with another primer set known to have different inherent
biases (Alberdi et al., 2018). Multiple strategies to minimize the impact
of artifactual sequences have been proposed, including the removal
of DNA sequences below a certain count threshold, the use of PCR
and sequencing replicates to enable constraining analyses only to se-
quences present in multiple replicates (Alberdi et al., 2018), and iden-
tification and removal of artifactual sequences by statistical means,
either while bioinformatic processing of the sequences (Callahan et
al., 2016), or when carrying out diversity analyses (Chiu & Chao, 2016).

In most cases, data sets cannot be completely corrected or com-
pleted; hence, researchers need to rely on modelling to obtain ap-
proximations for real diversity values. Diversity partitioning based
on Hill numbers enables unequal sample sizes to be accounted for
when comparing different systems, through applying different
weights to the subsystems (Table 2). If the data are proven to be
insufficient, the aforementioned R packages iNext and iNextPD en-
able extrapolation of rarefaction curves based on Hill numbers, to
estimate the actual diversity of each sample (using abundance ap-
proach) or the whole system (using incidence approach) for orders of
diversity O, 1 and 2. Alternatively, another method to perform such
estimations on any low order of diversity (g < 3), and hence enable
ploting continuous diversity profiles, is implemented in the R pack-
age SpadeR (Chao & Jost, 2015).
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These approaches enable some shortcomings of insufficient data
to be addressed, although the issue of imperfect detection remains. It
is well known that the probability to detect organisms depends on their
abundances, but also on biological properties inherent to each organ-
ism. Occupancy-modelling approaches have traditionally been applied
to overcome such detectability biases (MacKenzie, Nichols, Hines,
Knutson, & Franklin, 2003). In molecularly characterized systems, the
issue of detectability is even more complex, because in addition to the
biological distortions of environmental DNA (Barnes & Turner, 2016),
there is another important source of bias produced by uneven primer
amplification rates (Pifiol et al., 2019). While eDNA representative-
ness assessment might be too complex to model (Alberdi et al., 2019;
Barnes & Turner, 2016), amplification biases can be measured in silico
(Pifol et al., 2019) and using mock communities (Lamb et al., 2019).
This enables implementing occupancy-modelling approaches that ac-
count for the relative amplification probability of OTUs (Ficetola et al.,
2015), which have also been implemented within the framework of
Hill numbers (Broms, Hooten, & Fitzpatrick, 2015; Iknayan, Tingley,
Furnas, & Beissinger, 2014). These approaches are still in its infancy,

but are likely to undergo a rapid development in the upcoming years.

9 | CONCLUSIONS

The extensive framework recently developed around Hill numbers
provides a powerful toolset for the integrative analysis of multiple
aspects of biological diversity. This approach could be applied in
a wide range of scientific fields, under different ecological frame-
works, such as community ecology or niche theory. As explained in
this article, molecular data enable exploiting the full potential of this
framework in a rather simple and straightforward way. It must be
noted that the methods explained here are simply a practical over-
view of a more complex and broader statistical framework, which
can be consulted in detail in several excellent reviews (e.g., Chao,
Gotelli, et al., 2014b; Chao et al., 2016). Overall however, we hope
that our piece and associated examples will encourage molecular
ecologists to take advantage of Hill numbers, and in doing so be able
to generate more logical, intuitive and reproducible results that will

serve to improve the reliability and usefulness of their research.
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